Books

Past, Present, and Future of Statistical Science

Distinguished Professor Noel Cressie contributed the chapter Environmental informatics: Uncertainty quantification in the environmental sciences.

Past, Present, and Future of Statistical Science was commissioned in 2013 by the Committee of Presidents of Statistical Societies (COPSS) to celebrate its 50th anniversary and the International Year of Statistics. COPSS consists of five charter member statistical societies in North America and is best known for sponsoring prestigious awards in statistics, such as the COPSS Presidents’ award.

Book Cover: Past, Present, and Future of Statistical ScienceThrough the contributions of a distinguished group of 50 statisticians who are past winners of at least one of the five awards sponsored by COPSS, this volume showcases the breadth and vibrancy of statistics, describes current challenges and new opportunities, highlights the exciting future of statistical science, and provides guidance to future generations of statisticians. The book is not only about statistics and science but also about people and their passion for discovery.

Distinguished authors present expository articles on a broad spectrum of topics in statistical education, research, and applications. Topics covered include reminiscences and personal reflections on statistical careers, perspectives on the field and profession, thoughts on the discipline and the future of statistical science, and advice for young statisticians. Many of the articles are accessible not only to professional statisticians and graduate students but also to undergraduate students interested in pursuing statistics as a career and to all those who use statistics in solving real-world problems. A consistent theme of all the articles is the passion for statistics enthusiastically shared by the authors. Their success stories inspire, give a sense of statistics as a discipline, and provide a taste of the exhilaration of discovery, success, and professional accomplishment.

Further details are available at CRC Press.

Award winning book from Distinguished Professor Noel Cressie

Released in 2011, Distinguished Professor Noel Cressie in conjunction with Christopher K. Wikle published "Statistics for Spatio-Temporal Data", a major text in the sphere of Spatial Statistics and Environmental Statistics. The book won the 2011 PROSE Award for Professional and Scholarly Excellence in the Mathematics Category, from the Association of American Publishers.

Noel Cressie's Spatio-Temporal Data bookThe book incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes.

This is a state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models.

The book is suitable for graduate students, professional staisticians, and researchers and practicioners in the field of applied mathematics, engineering, and the environmental and health sciences.

Further details are available at Wiley Press, or visit Distinguished Professor Noel Cressie's home page.

Maximum Likelyhood Estimation for Sample Surveys

NIASRA members Ray Chambers and David Steel have collaborated with colleagues Suojin Wang from Texas A&M University and Alan Welsh from the Australian National University to produce a book on Maximum Likelihood Estimation for Sample Surveys, which has recently been published by CRC press.

Maximum Likelihood Estimation for Sample Surveys

Sample surveys provide data used by researchers in a large range of disciplines to analyse important relationships using well-established and widely-used likelihood methods. The methods used to select samples often result in the sample differing in important ways from  the target population and standard application of likelihood methods can lead to biased and inefficient estimates. Maximum Likelihood Estimation for Sample Surveys presents an overview of likelihood methods for the analysis of sample survey data that account for the selection methods used, and includes all necessary background material on likelihood inference. It covers a range of data types including multilevel data, and is illustrated by many worked examples using tractable and widely-used models. It also discusses more advanced topics, such as combining data, non-response, and informative sampling.

Further details are available at CRC Press, or visit Distinguished Professor Noel Cressie's home page.

An Introduction to Model-Based Survey Sampling with Applications

Ray Chambers and Robert Clark, have published a new book titled "An Introduction to Model-Based Survey Sampling with Applications".

An Introduction to Model-Based Survey Sampling with Applications

This text brings together important ideas on the model-based approach to sample survey, which has been developed over the last twenty years. Suitable for graduate students and professional statisticians, it moves from basic ideas fundamental to sampling to more rigorous mathematical modelling and data analysis and includes exercises and solutions.

Read further details of the book, or purchase the book.

Last reviewed: 18 July, 2016