Small Area Estimation Under Transformation To Linearity

Hukum Chandra and Ray Chambers
Small Area Estimation Under Transformation To Linearity

Hukum Chandra and Ray Chambers

Abstract
Small area estimation based on linear mixed models can be inefficient when the underlying relationships are non-linear. In this paper we introduce SAE techniques for variables that can be modelled linearly following a non-linear transformation. In particular, we extend the model-based direct estimator of Chandra and Chambers (2005) to data that are consistent with a linear mixed model in the logarithmic scale, using model calibration to define appropriate weights for use in this estimator. Our results show that the resulting transformation-based estimator is both efficient and robust with respect to the distribution of the random effects in the model. An application to business survey data demonstrates the satisfactory performance of the method.

Key Words: Sample survey; Survey estimation; Business surveys; Model calibration; Skewed data; Model-based direct estimation; Empirical best linear unbiased prediction.

1. Introduction
Commonly used methods for small area estimation (SAE) assume that a linear mixed model can be used to characterize the regression relationship between the survey variable Y and an auxiliary variable X in the small areas of interest. In particular, empirical best linear unbiased prediction (EBLUP), see Rao (2003, chapters 6 - 8) is typically based on a linear mixed model assumption. However, when the data are skewed, as is often the case in business surveys, the relationship between Y and X may not be linear in the original (raw) scale, but can be linear in a transformed scale, e.g. the
logarithmic (log) scale. In such cases we would expect estimation based on a linear mixed model for Y to be inefficient compared with one based on a similar model for a transformed version of Y. See Hidiroglou and Smith (2005). The use of transformations in inference has a long history, see for example Carroll and Ruppert (1988, chapter 4). Recently, Chen and Chen (1996) and Karlberg (2000a) have investigated the use of a ‘transform to linearity’ approach for regression estimation of survey variables that behave non-linearly. However, to the best of our knowledge there has been no application of this idea in SAE, even though economic theory (and casual observation) suggests that regression relationships in business survey data are typically multiplicative, and hence linear in the log scale.

In this paper we extend the model-based direct (MBD) estimation ideas described in Chandra and Chambers (2005) to the situation where the linear mixed model underpinning SAE holds on the log scale, using weights derived via model calibration (Wu and Sitter, 2001). In doing so, we note that our approach easily generalises to other monotone (i.e. invertible) transformations. In contrast, extension of the EBLUP approach to where the data follow a linear mixed model under transformation is complicated. We also relax the usual normality assumption for the area effects in order to examine robustness with respect to this assumption.

In the following section we summarise the MBD approach to SAE under a linear mixed model. In section 3 we use a model-based perspective to motivate model calibrated estimation of population quantities where the underlying variable is linear after suitable transformation. In section 4 we bring these two ideas together, introducing the concept of a fitted value model derived from a linear mixed model in the transformed scale. We then use this fitted value model to specify survey weights for use in an MBD estimator in SAE. In section 5 we present empirical results from a number
of simulation studies that contrast the proposed transformation-based MBD estimator with both the EBLUP and the ‘usual’ MBD estimator defined by fitting a linear mixed model to the data. Section 6 concludes the paper with a discussion of outstanding issues.

Note that the approach taken in this article is model-based. Consequently all moments are evaluated with respect to a model for the population data. Also, all sample data are assumed to have been obtained via a non-informative sampling method, e.g. probability sampling with inclusion probabilities defined by known model covariates.

2. Model-Based Direct Estimation for Small Areas

To start, we fix our notation. Let \(U \) denote a population of size \(N \) and let \(y_U \) denote the \(N \)-vector of population values of a characteristic \(Y \) of interest. Suppose that our primary aim is estimation of the total \(t_U = \sum_U y_j \) of these population values (or their mean \(m_U = N^{-1} \sum_U y_j \)). Let \(X \) denote a \(p \)-vector of auxiliary variables that are related, in some sense, to \(Y \) and let \(x_U \) denote the corresponding \(N \times p \) matrix of population values these variables. We assume that the individual sample values of \(X \) are known. The non-sample values of \(X \) may not be individually known, but are assumed known at some aggregate level. At a minimum, we know the vector of population totals \(t_{UX} \) of the columns of \(X \).

Suppose that it is reasonable to assume that the regression of \(Y \) on \(X \) in the population is linear, i.e.

\[
E(y_U | x_U) = x_U \beta \quad \text{and} \quad Var(y_U | x_U) = v_U
\]

(1)

where \(v_U \) is known up to a multiplicative constant. Given a sample \(s \) of size \(n \) from this population, we can partition \(x_U = \begin{bmatrix} x_s \\ x_r \end{bmatrix} \) and \(v_U = \begin{bmatrix} v_s & v_r \\ v_r & v_{rr} \end{bmatrix} \) into their sample and non-
sample components. Here \(r = U - s \) denotes the population units that are not in sample. The vector of weights that defines the Best Linear Unbiased Predictor (BLUP) of \(t_U \) is then (Royall, 1976; Valliant, Dorfman and Royall, 2000, section 2.4)

\[
W^{BLUP}_j = \left(W^{BLUP}_j; j \in s \right) = 1_s + H'_s (t_s - t) + (I_s - H'_s x_s')v_{ss}^{-1}v_s 1_r
\]

(2)

where \(H_s = (x_s'v_{ss}^{-1}x_s)^{-1}x_s'v_{ss}^{-1} \), \(I_s \) is the identity matrix of order \(n \), \(t_s \) is the vector of sample totals of \(X \) and \(1_s \) denotes a vector of ones of size \(n \) \((N - n)\).

As noted in section 1, linear mixed models are often used in SAE. Such models can be written in the form

\[
y_U = x_U \beta + g_U u + e_U
\]

(3)

where \(u \) is a random vector of so-called area effects, \(e_U \) is a population \(N \)-vector of random individual effects and \(g_U \) is a known matrix. In general, area effects are vector-valued, so \(u' = (u'_1 u'_2 \cdots u'_D) \) and \(g_U = \text{diag}\{g_i; i = 1, \ldots, D\} \), where \(i \) indexes the \(D \) small areas that make up the population and \(g_i \) is of dimension \(N_i \times q \), where \(N_i \) is the population size of area \(i \). The area specific effects \(\{u_i; i = 1, \ldots, D\} \) are assumed to be independent and identically distributed realisations of a random vector of dimension \(q \) with zero mean and covariance matrix \(\Sigma_u \). Similarly, the scalar individual effects making up \(e_U \) are assumed to be independent and identically distributed realisations of a random variable with zero mean and variance \(\sigma_e^2 \), with area and individual effects mutually independent. The parameters \(\theta = (\Sigma_u, \sigma_e^2) \) are typically referred to as the variance components of (3). Throughout, we assume that there is at least one sample unit in each small area of interest.

Given the values of the variance components, it is straightforward to see that (3) is
just a special case of the general linear model (1) that underpins the BLUP weights (2). In particular, under (3)

\[\mathbf{v}_{ss} = \text{diag}\left\{ v_{is}; i = 1, \ldots, D \right\} = \text{diag}\left\{ g_{is} \Sigma_{u} g'_{is} + \sigma^2_{s} \mathbf{I}; i = 1, \ldots, D \right\} \]

(4)

and

\[\mathbf{v}_{sr} = \text{diag}\left\{ v_{j}; i = 1, \ldots, D \right\} = \text{diag}\left\{ g_{is} \Sigma_{u} g'_{js}; i = 1, \ldots, D \right\}. \]

(5)

Here \(g_{is} \) and \(g_{js} \) denote the restriction of \(g_{i} \) to sampled and non-sampled units in area \(i \) respectively. Given estimated values \(\hat{\theta} = \left(\hat{\Sigma}_{s}, \hat{\sigma}^2_{s} \right) \) of the variance components we can substitute these in (4) and (5) to obtain estimates \(\hat{\mathbf{v}}_{ss} \) and \(\hat{\mathbf{v}}_{sr} \) of \(\mathbf{v}_{ss} \) and \(\mathbf{v}_{sr} \) respectively, and therefore compute ‘empirical’ BLUP weights, or EBLUP weights

\[\mathbf{w}_{s}^{EBLUP} = \left(\mathbf{w}_{j}^{EBLUP}; j \in s; i = 1, \ldots, D \right) = \mathbf{I}_{s} + \hat{\mathbf{H}}_{s} \left(\mathbf{t}_{is} - \mathbf{t}_{s} \right) + \left(\mathbf{I}_{s} - \hat{\mathbf{H}}_{s}^{n} \right) \mathbf{v}_{ss}^{-1} \mathbf{v}_{sr} \mathbf{1}_{r} \]

(6)

where \(\hat{\mathbf{H}}_{s} = \left(\mathbf{x}_{s}^{'} \mathbf{v}_{ss}^{-1} \mathbf{x}_{s} \right)^{-1} \mathbf{x}_{s}^{'} \mathbf{v}_{sr}^{-1} \). Note that we now use a double index of \(ij \) to differentiate between population units in different areas. We also use \(s \) to denote the \(n_{i} \) sample units in area \(i \).

The MBD estimator for the mean \(m_{iy} \) of \(Y \) in area \(i \) (Chandra and Chambers, 2005) based on the EBLUP weights (6) is simply the corresponding weighted average of the sample values of \(Y \) in area \(i \),

\[\hat{m}_{iy}^{MBD} = \left\{ \sum_{j \in s_{i}} \mathbf{w}_{j}^{EBLUP} \right\}^{-1} \sum_{j \in s_{i}} \mathbf{w}_{j}^{EBLUP} y_{ij}. \]

(7)

Note that (7) is not the EBLUP for \(m_{iy} \) under (3). This is (see Rao, 2003, section 6.2.3)

\[\hat{m}_{iy}^{EBLUP} = \hat{E} \left\{ m_{iy} \left| \mathbf{y}_{is}, \mathbf{x}_{is}, \mathbf{x}_{is} \right. \right\} \]

\[= N_{i}^{-1} \left[\sum_{j \in s_{i}} y_{ij} + \mathbf{1}_{r}' \left(\mathbf{x}_{is} \hat{\beta} + \hat{\mathbf{v}}_{ss} \mathbf{v}_{ss}^{-1} \left(\mathbf{y}_{is} - \mathbf{x}_{is} \hat{\beta} \right) \right) \right] \]

(8)

\[= N_{i}^{-1} \left[n_{i} y_{is} + (N_{i} - n_{i}) \left(\mathbf{x}_{is}^{'} \hat{\beta} + \mathbf{g}_{is}^{'} \hat{\Sigma}_{s} \mathbf{g}_{is} + \sigma^2_{s} \mathbf{I}_{s} \right)^{-1} \mathbf{y}_{is} - \mathbf{x}_{is} \hat{\beta} \right]. \]
Here \hat{E} denotes the expectation operator under (3) with unknown parameters replaced by estimates, \mathbf{x}_i and \mathbf{x}_r are the matrices of sample and non-sample values of \mathbf{X} in area i, \mathbf{y}_i is the vector of sample values of Y in the same area, $\hat{\beta}$ is the ‘empirical’ BLUE of β, \mathbf{v}_{ir} is the transpose of the estimated value of \mathbf{v}_{is} with $\hat{\mathbf{v}}_{is}$ the corresponding estimate of \mathbf{v}_{is}, see (4) and (5), and $\mathbf{1}_n$ is a vector of ones of length $N_i - n_i$. Note that the last expression on the right hand side of (8) follows directly by substitution of (4) and (5), with \mathbf{X}_r and \mathbf{G}_r denoting the vectors defined by averaging the columns of \mathbf{x}_r and \mathbf{g}_r respectively.

By construction, (7) is a direct estimator of m_{iy}, because it is a weighted mean of the area i sample values of Y. In contrast, (8) is an indirect estimator because it cannot be expressed in this form, being a weighted mean of all the sample values of Y. Clearly, under (3), (8) is more efficient than (7). However, (7) has the advantage of being a simple weighted mean of the area i sample data, and therefore should be more robust to misspecification of (3) than the more model-dependent estimator (8). Some empirical evidence for this is set out in Chandra and Chambers (2005) and in Chandra, Salvati and Chambers (2007), with more extensive evidence available from the unpublished PhD thesis, Chandra (2007). Direct estimators like (7), i.e. estimators that are defined as weighted averages of the sample data from the small areas of interest, have a number of practical advantages, including simplicity of construction and aggregation consistency. Also, as we shall see later, (7) is easily generalised to models that are more complex than (3). Corresponding generalisations of (8) usually lead to rather complex non-linear estimators.

MSE estimation for (8) is usually carried out using the theory described in Prasad and Rao (1990). Although this MSE estimator is somewhat complicated, it works well
under (3). However, when (3) fails it can be misleading. It is also inadequate as an estimator of the repeated sampling MSE of (8), as has been pointed out by Longford (2007). In contrast, MSE estimation for (7) is quite straightforward. This is because if one treats the weights defining this estimator as fixed, then it is a linear estimator of a domain mean, and so its prediction variance V_i under (1) can be estimated using well-known methods (see Royall and Cumberland, 1978). Since in general the EBLUP weights (6) are not ‘locally calibrated’ (i.e. they do not reproduce the area i mean \bar{x}_i of X), (7) has a bias B_i under (1). A simple plug-in estimate of this bias is the difference between (7) and $\bar{x}_i\hat{\beta}$. The final MSE estimator used with (7) is therefore defined by summing the estimate of V_i and the square of this estimate of B_i. This method of MSE estimation has been empirically demonstrated to have good model-based as well as repeated sampling properties. See Chandra and Chambers (2005), Chambers and Tzavidis (2006), Chandra, Salvati and Chambers (2007) and Tzavidis, Salvati, Pratesi and Chambers (2007).

3. Model Calibrated Weighting

Model calibration was introduced by Wu and Sitter (2001) as a model-assisted method of calibrated weighting when the underlying regression relationship is non-linear. Here we provide a model-based perspective on the method, as a precursor to using it for constructing weights for use in an MBD estimator in a similar situation.

Suppose that the underlying population model is non-linear, with the relationship between Y and X in the population of form

$$E(y_j \mid x_j) = h(x_j; \eta) \text{ and } Var(y_j \mid x_j) = \sigma_j^2. \quad (9)$$

Here $j = 1, \ldots, N$, η (typically vector-valued) and σ_j^2 are unknown model parameters.
and the mean function \(h(x_j;\eta) \) is a known function of \(x_j \) and \(\eta \). We also assume that population units are mutually uncorrelated given their respective values of \(X \). Note that (9) is quite general, and includes linear, non-linear, and generalized linear models as special cases. In this situation, Wu and Sitter (2001) define the model-calibrated estimator of the population total \(t_U \) as \(\hat{t}_{y}^{mc} = \sum_{j=1}^{N} w_{y}^{mc} y_j \), where the vector of weights \(w_{y}^{mc} = (w_{y}^{mc}) \) is chosen to minimise an appropriately chosen measure of the distance from \(w_{y}^{mc} \) to the vector of Horvitz-Thompson weights \(w_{y} = (\pi_j^{-1}) \), subject to the model calibration constraints

\[
\sum_{j=1}^{N} w_{y}^{mc} = N \quad \text{and} \quad \sum_{j=1}^{N} w_{y}^{mc} h(x_j;\hat{\eta}) = \sum_{j=1}^{N} h(x_j;\hat{\eta}) \tag{10}
\]

with \(\hat{\eta} \) a design consistent estimator of \(\eta \). Note that unlike standard calibration, the constraints (10) require that we know the individual population values of \(X \). The key idea behind this approach is that provided (9) fits reasonably, then \(y_j \) is (at least approximately) a linear function of its fitted value \(h(x_j;\hat{\eta}) \) under this model and so we can carry out linear estimation using these fitted values as auxiliary information.

A model-based perspective on model calibration can be developed as follows. Let \(\hat{\eta} \) denote a ‘model-efficient’ estimator of \(\eta \) in (9), e.g. its maximum likelihood (ML) estimator, with associated fitted values \(h(x_j;\hat{\eta}) \). In general, these fitted values will not be unbiased. They will also be correlated. However, there will still be a systematic relationship between the actual values of \(Y \) and their corresponding fitted values that we can approximate. Although there is nothing to stop us looking at more complex approximations, a linear model for the relationship between the population values \(y_j \) and the fitted values \(\hat{y}_j = h(x_j;\hat{\eta}) \) seems a reasonable starting point. We therefore
replace the non-linear model (9) by the linear model

\[
E\left(y_j \mid \hat{y}_j\right) = \alpha_0 + \alpha_i \hat{y}_j \quad \text{and} \quad \text{Cov}\left(y_j, y_k \mid \hat{y}_j, \hat{y}_k\right) = \omega_{jk}.
\]

We refer to (11) as the ‘fitted value’ model corresponding to (9). Let \(J_U \) denote the population ‘design matrix’ under (11), i.e. \(J_U = \begin{bmatrix} 1_U & \hat{y}_U \end{bmatrix} \), where \(1_U \) denotes the unit vector of size \(N \) and \(\hat{y}_U = \left(\hat{y}_j ; j = 1,\ldots,N \right) \), and put \(\Omega_U = \begin{bmatrix} \omega_{jj} ; j = 1,\ldots,N ; k = 1,\ldots,N \end{bmatrix} \).

We can then partition \(J_U \) and \(\Omega_U \) according to sample (s) and non-sample (r) units as

\[
J_U = \begin{bmatrix} J_s \\ J_r \end{bmatrix} \quad \text{and} \quad \Omega_U = \begin{bmatrix} \Omega_{ss} & \Omega_{sr} \\ \Omega_{rs} & \Omega_{rr} \end{bmatrix},
\]

and hence write down the weights that define the BLUP of \(t_{y_j} \) under (11). These are the model-based model-calibrated weights

\[
w_{mbmc}^{mbmc} = \begin{pmatrix} w_{j}^{mbmc} \\ \vdots \\ w_{N}^{mbmc} \end{pmatrix} = 1_s + H_{mc}^{'} (J_U^{'} 1_U - J_s^{'} 1_s) + (I_s - H_{mc}^{'} J_s^{'}) \Omega^{-1}_{ss} \Omega_{sr} 1_r
\]

where \(H_{mc} = (J_s^{'} \Omega_{ss}^{-1} J_s)^{-1} J_s^{'} \Omega_{ss}^{-1} \). Clearly, these weights are model-calibrated since

\[
\sum_{j \in s} w_{j}^{mbmc} = N \quad \text{and} \quad \sum_{j \in s} w_{j}^{mbmc} \hat{y}_j = \sum_{j \in s} \hat{y}_j. \]

However, unlike the linear model EBLUP weights (2), they are not calibrated on \(X \). In practice, the components of \(\Omega_U \) will not be known and will need to be estimated. When these estimates are substituted in (12), we obtain the empirical version \(w_{embc}^{mbmc} \) of these model-calibrated weights.

4. Small Area Estimation under Transformation

In this section we extend the MBD approach to SAE when the underlying regression relationships are non-linear, exploring its use with model-based model-calibrated weights. In doing so, we shall focus on the important case where the population values of \(Y \) follow a non-linear model in their original (raw) scale, but their logarithms can be modelled linearly. The extension to other ‘transform to linear’ models is straightforward.
Without loss of generality, suppose that both Y and X are scalar and strictly positive, with skewed population marginal distributions and clear evidence of non-linearity in their relationship, e.g. as in many business surveys applications. Furthermore, a linear mixed model is appropriate for characterising how the regression of $\log(Y)$ on $\log(X)$ varies between the small areas. That is, for $i = 1, \ldots, D; j = 1, \ldots, N_i$ we have

$$l_{ij} = \log(y_{ij}) = \beta_0 + \beta_1 \log(x_{ij}) + g_j u_i + e_{ij}$$ \hspace{1cm} (13)$$

where y_{ij} and x_{ij} are the values of Y and X respectively for population unit j in small area i, g_j denotes a ‘contextual’ covariate of dimension q, u_i denotes a random effect for area i also of dimension q and e_{ij} is a scalar individual random effect. As usual with this type of model, we assume that all random effects are normally distributed and mutually uncorrelated, with zero expected values, $\text{Var}(u_i) = \Sigma_u$ and $\text{Var}(e_{ij}) = \sigma^2_e$. Note that $\text{Var}(l_{ij}|x_{ij}) = v_{ij} = g_j' \Sigma u g_j + \sigma^2_e$ and $\text{Cov}(l_{ij}, l_{ik}|x_{ij}, x_{ik}, g_j, g_k) = v_{jk} = g_j' \Sigma u g_k$ under (13).

Given sample values of y_{ij}, x_{ij} and g_j, standard methods of estimation (e.g. ML or REML, see Harville, 1977) can be used to estimate the parameters of (13). Let $\hat{\Sigma}_u$ and $\hat{\sigma}^2_e$ denote the resulting estimates of the variance components of this linear mixed model. The estimate of $\beta = (\beta_0, \beta_1)'$ is then

$$\hat{\beta} = (\sum_i d_i' \hat{\nu}_i^{-1} d_i)^{-1} (\sum_i d_i' \hat{\nu}_i^{-1} l_i)$$ \hspace{1cm} (14)$$

where $\hat{\nu}_i$, d_i and l_i are the sample components of $\hat{\nu}_i = [\hat{\nu}_{ijk}] = g_j' \hat{\Sigma} g_j + \hat{\sigma}^2 I$, $d_i = [d_{ijk}] = [1, \log(x_{ij})]$ and $l_i = (l_{ij}; j = 1, \ldots, N_i)$ respectively. Here g_j is the $N_i \times q$ matrix defined by the covariates g_j in area i, I_i is the identity matrix of order N_i, l_i
denotes a vector of ones of dimension \(N \) and \(\log(x_i) \) denotes the vector of \(N \) values of \(\log(X) \) in area \(i \).

Note that when the variance components \(\Sigma_u \) and \(\sigma_e^2 \) are known, (14) is the BLUE for \(\beta \). Consequently, \(E(\hat{\beta}) = \beta \) and \(\text{Var}(\hat{\beta}) = \left(\sum_i d_i' \hat{d}_u^{-1} d_u \right)^{-1} \). Put \(\hat{\phi} = (\hat{\phi}_y) = d \hat{\beta} \).

Then \(E(\hat{\phi}) = d/\beta \) and \(\text{Var}(\hat{\phi}) = A = [a_{ij}] = d \left(\sum g_g \hat{d}_g^{-1} d_g \right)^{-1} d' \), where

\[
a_{ij} = d_i' \text{Var}(\hat{\beta}) d_k \to 0 \quad \text{as} \quad n \to \infty.
\]

Our aim is to use the log scale linear mixed model (13) for estimation of the small area means \(m_{iy} \). In particular, we use model calibration based on this model to develop sample weights for use in the MBD estimator (7) of this quantity. From the development in the previous section it can be seen that this requires us to first specify a fitted value model (11) for \(Y \) based on (13), i.e. we need to calculate appropriate fitted values \(\hat{y}_{ij} \) as well as estimates \(\hat{w}_{ijk} \) of \(w_{ijk} = \text{Cov}(y_{ij}, x_{ij}, g_{ij}, g_{ik}) \) under (13). The sample weights to use in the MBD estimator (7) are then given by (12).

A simple method of defining fitted values \(\hat{y}_{ij} \) under (13) is one where parameter estimates derived under this model are used to obtain predicted values on the log scale which are then back-transformed. Unfortunately, as is well known, this approach is biased. We therefore develop the first and second order moments of an appropriate bias-corrected fitted value model based on (13). Let \(x_s \) and \(g_s \) denote the sample values of \(x_{ij} \) and \(g_{ij} \) respectively. Under (13),

\[
E(y_{ij} | x_{ij}, g_{ij}) = E\left[e^{\hat{\theta}} | x_{ij}, g_{ij}\right] = e^{\hat{\theta}_s + \hat{\theta}_g / 2} \neq E\left(e^{\hat{\theta}_s + \hat{\theta}_g / 2} | x_{ij}, g_{ij}\right) = E\left(\hat{y}_{ij} | x_{ij}, g_{ij}\right)
\]

so the usual bias correction that makes use of the fact that the conditional distribution of
y_γ is lognormal is inadequate. Let $\hat{\eta}_\gamma = (\hat{\beta}, \hat{\v}_\gamma)'$ be an estimate of $\eta_\gamma = (\beta, \v_\gamma)'$ such that $E(\hat{\eta}_\gamma - \eta_\gamma) \approx 0$ for large n. Put $z(\eta_\gamma) = e^{\phi_\gamma + \v_\gamma/2}$. Using a second order Taylor series approximation we can write

$$z(\hat{\eta}_\gamma) \approx z(\eta_\gamma) + (\hat{\eta}_\gamma - \eta_\gamma)' z^{(1)}(\eta_\gamma) + \frac{1}{2} (\hat{\eta}_\gamma - \eta_\gamma)' z^{(2)}(\eta_\gamma)(\hat{\eta}_\gamma - \eta_\gamma)$$

and so

$$E\left\{ z(\hat{\eta}_\gamma) \right\} \approx z(\eta_\gamma) + \frac{1}{2} tr \left[E\left\{ z^{(2)}(\eta_\gamma)(\hat{\eta}_\gamma - \eta_\gamma)' \right\} \right].$$

Here

$$z^{(1)}(\eta_\gamma) = \left(d' e^{\phi_\gamma + \v_\gamma/2} \frac{1}{2} e^{\phi_\gamma + \v_\gamma/2} \right)'$$

and

$$z^{(2)}(\eta_\gamma) = \left(\begin{array}{cc}
 d & d' e^{\phi_\gamma + \v_\gamma/2} \\
 \frac{1}{2} & \frac{1}{2} e^{\phi_\gamma + \v_\gamma/2} \end{array} \right)$$

are the vector and matrix respectively containing the first and second order derivatives of $z(\eta_\gamma)$ with respect to η_γ. Since the asymptotic covariance between ML (or REML) estimators of the fixed and variance components of a linear mixed model is zero (McCulloch and Searle, 2001, chapter 2, pp 40 – 45), the covariance between $\hat{\beta}$ and $\hat{\v}_\gamma$ will be negligible. It follows that

$$tr \left[E\left\{ z^{(2)}(\eta_\gamma)(\hat{\eta}_\gamma - \eta_\gamma)' \right\} \right] = tr \left[z^{(2)}(\eta_\gamma) E\left\{ (\hat{\eta}_\gamma - \eta_\gamma)(\hat{\eta}_\gamma - \eta_\gamma)' \right\} \right]$$

$$\approx e^{\phi_\gamma + \v_\gamma/2} \left[d' \left(\sum_g d' \hat{\v}^{-1} d \right)^{-1} d + \frac{1}{4} Var(\hat{\v}_\gamma) \right]$$

$$= E(y_\gamma | x_\gamma, g_\gamma) \left[\hat{\alpha}_\gamma + \frac{1}{4} Var(\hat{\v}_\gamma) \right]$$
where \(\hat{a}_{ij} = d_{ij}' \hat{V}(\hat{\beta})d_{ij} \) and \(\hat{V}(\hat{\beta}) = \left(\sum_i d_i' \hat{v}_{ij} d_i \right)^{-1} \) is the usual estimator of \(Var(\hat{\beta}) \).

Our fitted values are therefore defined by the second order bias corrected estimator of

\[
E(y_{ij} \mid x_{ij}, g_{ij}),
\]

\[
\hat{y}_{ij} = h(d_{ij}, \hat{\eta}_{ij}) = k_{ij}^{-1} e^{\hat{\phi}_{ij} + \hat{v}_{ij} / 2}
\tag{15}
\]

where \(k_{ij} = 1 + \frac{1}{2} \left(\hat{a}_{ij} + \frac{1}{4} \hat{V}(\hat{v}_{ij}) \right) \) and \(\hat{V}(\hat{v}_{ij}) \) is the estimated asymptotic variance of \(\hat{v}_{ij} \). Under ML and REML estimation of the variance components of (13), this estimated asymptotic variance is obtained from the inverse of the relevant information matrix. Note that the bias adjustment of Karlberg (2000a) is a special case of (15).

In order to use (12) to define model-based model-calibrated sample weights, we also need estimates of the second order moments of the population values of \(Y \) given these fitted values. The conditional moments \(\omega_{gk} \) are a first order approximation to these moments. In particular, given normal random effects

\[
\omega_{gk} = e^{(\phi_g + \phi_k + v_{gk} + v_{yk}) / 2} \left(e^{v_{gk}} - 1 \right)
\tag{16}
\]

Our estimate \(\hat{\omega}_{gk} \) of \(\omega_{gk} \) is obtained by substituting \(\hat{\phi}_g \) and \(\hat{v}_{gk} \) for \(\phi_g \) and \(v_{gk} \) in (16).

The empirical model-based model-calibrated weights (12) corresponding to the fitted value model defined by (15) and (16) are

\[
w_{embmc} = (w_{embmc}; j \in S; i = 1, \ldots, D)
= 1_s + \hat{H}_{mc} (J_{U}' 1_U - J_{S}'1_S) + (1_s - \hat{H}_{mc} J_{mc}') \hat{\Omega}_{ss}^{-1} \hat{\Omega}_{sr} 1_r
\tag{17}
\]

Here \(J_{U} = [1_U \; \hat{y}_{U}] \), so \(J_{U}' 1_U - J_{S}'1_S = \left(N - n \sum_{i,j} \sum_j \hat{y}_{ij} \right) \), and \(\hat{H}_{mc} = (J_{mc}' \hat{\Omega}_{ss}^{-1} J_{mc})^{-1} J_{mc}' \hat{\Omega}_{ss}^{-1} \).

Also \(\hat{\Omega}_{ss} = diag \{ \hat{\Omega}_{ss}; i = 1, \ldots, D \} \) and \(\hat{\Omega}_{sr} = diag \{ \hat{\Omega}_{sr}; i = 1, \ldots, D \} \), where \(\hat{\Omega}_{ss} \) and
\(\hat{\Omega}_{sp} \) are defined by the sample/non-sample decomposition of \(\hat{\Omega} \). For example, when (13) corresponds to a random intercepts specification,
\[
\hat{v}_{ijk} = \hat{\sigma}_u^2 + \hat{\sigma}_e^2 I(j = k)
\]
and so the components of \(\hat{\Omega} \) are
\[
\hat{\omega}_{ijk} = e^{\hat{\phi}_u + \hat{\phi}_e + \hat{\sigma}_i^2} \left[e^{\hat{\sigma}_i^2} \left\{ 1 + I(j = k) \left(e^{\hat{\sigma}_e^2} - 1 \right) \right\} - 1 \right].
\]

The development so far has assumed normality of log-scale random effects. However, there is no good reason (beyond convenience) to assume that with skewed data these random area effects should be normal. One alternative, given a scalar area effect in (13), is to assume that the random effects in this model are drawn from the gamma family of distributions. From the properties of this distribution and using binomial and exponential expansions (ignoring higher order terms) we can show that
\[
E(y_{ij \mid x_{ij}, g_{ij}}) = e^{\phi_u + \tau + \frac{\sigma_i^2}{2}} = z(\eta_{ij})
\]
as in the normal case. This indicates that an MBD estimator based on the model-based model-calibrated weights (17) should be robust with respect to the distribution of the random effects in (13).

Finally, we consider definition of the MBD estimator itself. As noted in section 2, this estimator is just the weighted average of the sample \(Y \)-values in an area. However, use of such a weighted average pre-supposes that the weights are reasonably close to being ‘locally calibrated on \(N \)’, i.e. when summed over the sample units in small area \(i \) we obtain a value that is not too different from the actual small area population size \(N_i \). This property usually holds if the weights are the EBLUP weights (6) defined by a linear mixed model for \(Y \). It does not necessarily hold for the model-based model-calibrated weights (17). Consequently, we consider two specifications for the MBD estimator given these weights. The first, which we refer to as a ‘Hajek specification’, is just the weighted average (7), with weights defined by (17). The second, which we refer to as a ‘Horvitz-Thompson specification’, replaces the denominator in (7) by the actual
value of N_j. That is, the two types of MBD estimator under model-based model-calibrated weighting that we consider are

$$m_{iy}^{\text{Hajek-TrMBD}} = \left\{ \sum_{j \in S_j} w_{ij}^{\text{embmc}} \right\}^{-1} \sum_{j \in S_j} w_{ij}^{\text{embmc}} y_{ij}$$

and

$$m_{iy}^{\text{HT-TrMBD}} = N_j^{-1} \sum_{j \in S_j} w_{ij}^{\text{embmc}} y_{ij}.$$

Estimation of the mean squared error of (18) and (19) is carried out in the usual way for MBD estimators, i.e. via the MSE estimation approach described in section 2.

5. An Empirical Evaluation

In this section we provide empirical results on the comparative performances of four different methods of SAE. These are the two ‘transformation-based’ MBD estimators (18) and (19), both based on the model-based model-calibrated weights (17) and denoted Hajek-TrMBD and HT-TrMBD respectively; the ‘standard’ MBD estimator (7) based on the linear mixed model (3) and the empirical EBLUP weights (6), which we denote by Hajek-LinMBD to emphasise that it is a Hajek-type weighted mean based on weights derived under a linear mixed model; and the EBLUP (8) derived under the same linear mixed model, which we denote LinEBLUP. Note that the mean squared errors for all three MBD estimators were estimated using the method described in section 2, while the mean squared error of LinEBLUP was estimated using the method described in Prasad and Rao (1990).

Our empirical results are based on two types of simulation studies. The first type used model-based simulation to generate artificial population and sample data. These data were then used to compare the performances of the different estimators. We carried out two sets of model-based simulations. In the first set of simulations (Set A), we
investigated the performance of these estimators given population data generated using
the log-scale linear mixed model (13). In second set of simulations (Set B), we
examined the robustness of these estimators to misspecification of this model. The
second type of simulation study was design-based. Here we evaluated these estimators
in the context of repeated sampling from a real population using realistic sampling
methods.

Four measures of estimator performance were computed using the various estimates
generated in these simulation studies. They were the relative bias (RB) and the relative
root mean squared error (RRMSE) of these estimates, together with the coverage rate
and average width of the nominal 95 per cent confidence intervals based on them. In
Tables 2 to 4 these measures are presented as averages over the small areas of interest.

5.1 The Model-Based Simulation Study

In our model-based simulations we fixed the population size at \(N = 15,000 \) and
randomly generated the small area population sizes \(N_i, i = 1, \ldots, D = 30 \) so that
\[\sum_i N_i = N. \]
We used an overall sample size of \(n = 600 \) with small area sample sizes set
so that they were proportional to the corresponding small area population sizes. These
area-specific sample sizes were kept fixed in all our simulations.

In Set A of our model-based simulations the population values \(y_{ij} \) were generated
using the multiplicative model
\[y_{ij} = 5.0 x_{ij} u_{ij}, \]
with random samples then taken from each small area. Here the values of \(x_{ij} \) were independently drawn from the log-normal
distribution \(\log(x_{ij}) \sim N\left(6, \sigma_x^2\right) \), with the individual effects and area effects
independently drawn as \(\log(e_{ij}) \sim N\left(0, \sigma_e^2\right) \) and \(\log(u_i) \sim N\left(0, \sigma_u^2\right) \) respectively. The
values of σ_e and σ_u were chosen so that the intra-area correlation in the population varied between 0.20 and 0.25. Table 1 shows the six different sets of parameter values that were used in Set A. These ensured that the simulated populations contained a wide range of variation. Using the sample data in each case, parameter values were estimated using the lme function in R (Bates and Pinheiro, 1998), and estimates for the small area means then calculated, along with appropriate nominal 95% confidence intervals. The process of generating population and sample data, estimation of parameters and calculation of small area estimates was independently replicated 1000 times. The results from this part of the simulation study are shown in Table 2.

In Set B of the model-based simulations, population data were generated using the model $y_{ij} = 5.0x_{ij} [\exp(\log^2(x_{ij}))]^{\gamma} u_i e_{ij}$. Here the individual effects e_{ij} and the area effects u_i were independently drawn as $\log(e_{ij}) \sim N(0,1)$ and $\log(u_i) \sim N(0,0.25)$ respectively, while the covariate values x_{ij} were drawn as $\log(x_{ij}) \sim N(3,0.04)$. Five different values for the parameter γ (-1.0, -0.5, 0.0, 0.5, 1.0) were investigated, thus generating population data with different degrees of curvature. All other aspects of these simulations, including the estimators considered, were the same as in Set A. Table 3 presents results from this component of the simulation study.

5.2 The Design-Based Simulation Study

This study used the same population and samples as the simulation studies described in Chandra and Chambers (2005) and Chambers and Tzavidis (2006), which was based on data obtained from a sample of 1652 farms that participated in the Australian Agricultural and Grazing Industries Survey (AAGIS). A realistic population of 81982 farms was defined by sampling with replacement from the original sample of 1652 farms with
probabilities proportional to their sample weights, all of which were strictly greater than one. A total of 1000 independent samples, each of size \(n = 1652 \), were drawn from this fixed population by simple random sampling without replacement within strata defined by the 29 Australian agricultural regions represented in the AAGIS sample. These regions are the small areas of interest. Regional sample sizes were fixed to be the same as in this original sample, varying from a low of 6 to a high of 117, which allows an evaluation of the performance of the different estimation methods across a range of realistic small area sample sizes. Note that sampling fractions in these strata also varied disproportionately, ranging between 0.70 and 15.87 percent. The aim is to estimate average annual farm costs (TCC, measured in A$) in each region using farm size (hectares) as the auxiliary variable. The same mixed model specification as in Chandra and Chambers (2005) is used. This includes an interaction term (zone by size) in the fixed effects and a random slope specification for the area effect. In its linear form the model does not fit the AAGIS sample data terribly well. This fit is improved (albeit marginally) when a log-scale linear specification is used. Our results are summarized in Table 4.

5.3 Discussion of Simulation Results

The most striking feature of Table 2 is the extremely large values of the average relative bias of Hajek-TrMBD under model-based model-calibrated weighting. On the other hand, HT-TrMBD, which is based on the same weights as Hajek-TrMBD, is clearly the best of the four estimators whose results are shown in this Table. An investigation of the reason for this anomaly revealed that summing the model-based model-calibrated weights (17) within small areas produced extremely variable estimates of the small area population sizes, implying that these weights cannot be considered as ‘multipurpose’ – they function well when used with variables that are reasonably
correlated with the variable that defines the fitted value model, but can fail with other, less well correlated, variables (e.g. the indicator variable for small area inclusion). We further note that this problem does not arise with the ‘standard’ empirical EBLUP weights (6), as Hajek-LinMBD performs consistently for all six of the scenarios explored in Set A of the simulation study. From now on we therefore focus our discussion on the three estimators, HT-TrMBD, Hajek-LinMBD and LinEBLUP.

Table 2 shows that the average relative biases and the average relative RMSEs for HT-TrMBD are consistently lower than those generated by Hajek-LinMBD and LinEBLUP. Furthermore, average coverage rates and interval widths for HT-TrMBD are better than those generated by Hajek-LinMBD and LinEBLUP. In comparison, for same order of RB, the RRMSE of LinEBLUP is smaller than that of Hajek-LinMBD, and, although both estimators generate very similar coverage rates, confidence intervals generated via LinEBLUP tend to have smaller average widths than those generated via Hajek-LinMBD. The plots in Figure 1 display the region-specific performance measures generated by these three estimators for the Set A simulations. These show that the RB and the RRMSE values generated by HT-TrMBD are smaller than corresponding values for Hajek-LinMBD and LinEBLUP in all regions. Further, the RB and the RRMSE of Hajek-LinMBD and LinEBLUP increase as the non-linearity in the data increases (i.e. as we move from parameter set 1 to parameter set 6). We also see that HT-TrMBD generates better coverage rates across all regions compared with the coverage rates generated by LinEBLUP and Hajek-LinMBD.

Overall, these results show that when the model for the underlying population is non-linear there can be significant gains from the use of HT-type MBD estimators for small area means based on the model-calibrated weights (17) compared with standard linear mixed model-based estimators like Hajek-LinMBD and LinEBLUP. They also show
that the indirect estimator LinEBLUP performs relatively better than the direct estimator Hajek-LinMBD in these situations.

In Set B of the model-based simulations we investigated the robustness of model-based model-calibrated direct estimation to misspecification of the non-linear model. The results in Table 3 show that in this case the biases generated by HT-TrMBD increase as the actual non-linear model deviates more from the assumed non-linear model ($\gamma = 0.0$ in the table). However, these biases are offset by small variability, so in terms of average RRMSE, HT-TrMBD still performs as well or better than LinEBLUP and continues to dominate Hajek-LinMBD. The biases generated by Hajek-LinMBD and LinEBLUP are of the same order, while the average RRMSE of LinEBLUP dominates that of Hajek-LinMBD. Average coverage rates for LinEBLUP are marginally better than those of Hajek-LinMBD and HT-TrMBD, but the average widths of the confidence intervals underpinning these rates tended to be smallest for HT-TrMBD, followed by LinEBLUP and then Hajek-LinMBD. Overall, our model-based simulation results for Set B indicate that although MBD-based SAE with model-based model-calibrated weights is susceptible to model misspecification bias, the overall performance of this approach appears relatively unaffected by slight deviations from the assumed non-linear model.

In Table 4 and Figure 2 we present the average and region-specific performance measure generated by different SAE methods for AAGIS data respectively. These results show that the average relative bias of HT-TrMBD is smaller than that of LinEBLUP but larger than that of Hajek-MBD, while the average RRMSE of HT-TrMBD is marginally larger than the corresponding values for Hajek-LinMBD and LinEBLUP. Inspection of Figure 2 shows that this result is essentially due to one region (21) in the original AAGIS sample that contained a massive outlier (TCC > A$30,000,000). This outlier was included
in the simulation population (twice) and then selected (in one case, twice) in 37 of the 1000 simulation samples, leading to completely unrealistic estimates for region 21 being generated by HT-TrMB2 and Hajek-LinMBD. The right-hand column in Table 4 therefore shows the average performances of the different methods when this region is excluded. Here we see that now HT-TrMBD and Hajek-LinMBD are essentially on a par, with both dominating LinEBLUP. The fact that HT-TrMBD does not provide significant gains over Hajek-LinMBD in this case reflects the fact that the raw-scale and log-scale linear mixed models used in these estimators both provide relatively poor fits to the AAGIS data.

6. Conclusions and Further Research

The simulation results discussed in the previous section show that combining model-based model-calibrated weights with direct estimation can bring significant gains in SAE efficiency if the population data are clearly non-linear. As one would expect, these gains are less when the assumed non-linear model is misspecified. Although we do not provide the details, our conclusions were essentially unaffected when we carried out similar simulations using gamma distributed random effects.

Our main caveat concerning the use of the model-based model-calibrated weights (17) for SAE is their specificity. These weights do not appear to have the same ‘multi-purpose’ characteristics as standard EBLUP weights based on linear mixed models. Further research is therefore required on how to build model-calibrated weights for SAE that are more ‘general purpose’. It is to be expected that such weights would not be as efficient as the variable specific weights (17), but hopefully this will be more than offset by their increased utility. A further issue that is extremely important in practice is that positively skewed survey variables can also take zero (or even negative) values. For
example, economic variables like debt and capital expenditure often take zero values, while variables defined as the difference of two non-negative quantities (e.g. profit, which is the difference between income and expenditure) can be negative. Karlberg (2000b) uses a mixture model to characterise data that are a mix of zeros and strictly positive values. This type of model can be used in model-based model-calibrated weighting.

Finally, we note that using a transformation-based MBD approach where the usual linear model assumptions are only approximately valid (the situation considered in this paper) is not the only approach that has been suggested for this problem. Two alternative approaches in the literature are the pseudo-EBLUP (Rao, 2003, section 7.2.7) and the model-assisted EB-type estimator of Jiang and Lahiri (2006). Recollect from (8) that the EBLUP is defined by replacing the unknown area i mean m_{iy} by an estimate of its expected value given the observed sample values of Y in area i and the area i values of X. Let π_y denote the sample inclusion probability of population unit j in small area i. The pseudo-EBLUP is then defined by replacing m_{iy} by an estimate of its expected value given the value of its design-consistent estimate

$$\hat{m}_{iy} = \left(\sum_{j \in s_i} \pi_{yj}^{-1} \right)^{-1} \sum_{j \in s_i} \pi_{yj}^{-1} y_{ij} = \sum_{j \in s_i} \hat{w}_{ij} y_{ij}$$

and the area i values of X. That is, under (3) the pseudo-EBLUP of m_{iy} is

$$\hat{m}_{iy}^{\text{pseudoEBLUP}} = E \left\{ m_{iy} \left| \hat{m}_{iy}^{\pi}, \hat{x}_{i}, x_{ir} \right. \right\}$$

$$= \hat{x}^T \hat{\beta}_w + \left(\hat{g}_{iw} \hat{\Sigma}_{iw} \hat{g}_{iw} \right)^{-1} \left(\hat{g}_{iw} \hat{\Sigma}_{iw} \hat{y}_{iw} + \hat{\sigma}_{\epsilon iw}^2 \sum_{j \in s_i} \hat{w}_{ij} y_{ij} \right)^{-1} \left(\hat{m}_{iy}^{\pi} - \hat{x}_{i} \hat{\beta}_w \right)$$

where $\hat{\beta}_w$, $\hat{\Sigma}_{iw}$ and $\hat{\sigma}_{\epsilon iw}^2$ are pseudo-maximum likelihood estimates based on the weights \hat{w}_{ij} and \hat{g}_{iw} and \hat{x}_{i} are design-consistent estimates of g_i and x_i that are
defined in exactly the same way as \(\hat{m}_{iy}^x \) above. Under the same model the Jiang and Lahiri (2006) model-assisted EB-type approach leads to an estimator that is also defined by conditioning on the value of \(\hat{m}_{iy}^x \),

\[
\hat{m}_{iy}^x = \sum_{j \in s_i} \tilde{w}_j \tilde{E} \left\{ \tilde{E} \left(y_j \mid x_j, u_i \right) \mid \hat{m}_{iy}^x, x_i \right\} \\
= \bar{x}_i' \hat{\beta} + \left\{ \tilde{w}_i' \left(\tilde{g}_i' \tilde{g}_i + \hat{\sigma}_g^2 I \right) \tilde{w}_i \right\}^{-1} \left\{ \tilde{w}_i' \tilde{g}_i \hat{\sigma}_u \tilde{g}_i' \tilde{w}_i \right\} \left(\hat{m}_{iy}^x - \bar{x}_i' \hat{\beta} \right) \tag{22}
\]

where \(\tilde{w}_i \) is the vector of standardised sample weights \(\tilde{w}_j \) in area \(i \). Note that in (22) we use optimal (i.e. ML or REML) estimates for model parameters.

Both (21) and (22) are essentially motivated by the idea of estimating the area \(i \) mean by its conditional expectation under (3) given the value of the usual design-consistent estimator (20) for this quantity. As such, they are indirect estimators like the EBLUP. Under (3), neither will be as efficient as the EBLUP, while if (13) rather than (3) holds, then both estimators rely on the design consistency of \(\hat{m}_{iy}^x \) for robustness. Since relying on a large sample property of a small sample statistic seems rather optimistic, we prefer to tackle the model specification problem directly, replacing (3) by (13) and using the transformation-based MBD approach described in section 4. Values of ARB and ARRMSE for the pseudo-EBLUP (21) and the Jiang and Lahiri estimator (22) are shown in Table 4. It is interesting to note that neither estimator appears to perform any better than the standard EBLUP in these design-based simulations, and all three are substantially out performed in terms of average RRMSE by the two MBD-type estimators that were investigated in this study. Clearly the results of a single (but reasonably realistic) simulation study should not be considered as anything more than indicative. However, they do provide some evidence that asymptotic design-based properties are no guarantee of small area estimation performance.
Acknowledgement

The first author gratefully acknowledges the financial support provided by a PhD scholarship from the U.K. Commonwealth Scholarship Commission.

References

Table 1 Population specifications for model-based simulation Set A

<table>
<thead>
<tr>
<th>Parameter Set</th>
<th>β</th>
<th>σ_u</th>
<th>σ_e</th>
<th>σ_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.30</td>
<td>0.50</td>
<td>3.00</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>0.35</td>
<td>0.60</td>
<td>2.50</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>0.40</td>
<td>0.70</td>
<td>2.25</td>
</tr>
<tr>
<td>4</td>
<td>1.3</td>
<td>0.45</td>
<td>0.80</td>
<td>1.75</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>0.50</td>
<td>0.90</td>
<td>1.50</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td>0.60</td>
<td>1.00</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Table 2 Average relative bias (ARB, %), average relative RMSE (ARRMSE, %), average coverage rate (ACR) and average interval width (AW) for model-based simulation Set A.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimator</th>
<th>Parameter Set</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARB</td>
<td>Hajek-TrMBD</td>
<td>-75.20</td>
<td>-95.97</td>
<td>-97.97</td>
<td>-98.55</td>
<td>-98.12</td>
<td>-98.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HT-TrMBD</td>
<td>0.02</td>
<td>-0.07</td>
<td>0.28</td>
<td>0.11</td>
<td>-0.39</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hajek-LinMBD</td>
<td>10.98</td>
<td>4.11</td>
<td>-0.29</td>
<td>-6.28</td>
<td>-7.81</td>
<td>-9.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LinEBLUP</td>
<td>12.65</td>
<td>5.44</td>
<td>0.49</td>
<td>-5.85</td>
<td>-7.68</td>
<td>-9.32</td>
<td></td>
</tr>
<tr>
<td>AARMSE</td>
<td>Hajek-TrMBD</td>
<td>7.98</td>
<td>1.25</td>
<td>1.22</td>
<td>1.30</td>
<td>1.44</td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HT-TrMBD</td>
<td>0.15</td>
<td>0.29</td>
<td>0.39</td>
<td>0.52</td>
<td>0.70</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hajek-LinMBD</td>
<td>1.03</td>
<td>1.47</td>
<td>1.79</td>
<td>1.89</td>
<td>1.98</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LinEBLUP</td>
<td>0.76</td>
<td>0.69</td>
<td>0.61</td>
<td>0.75</td>
<td>0.98</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>ACR</td>
<td>Hajek-TrMBD</td>
<td>0.99</td>
<td>0.98</td>
<td>0.96</td>
<td>0.95</td>
<td>0.94</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HT-TrMBD</td>
<td>0.94</td>
<td>0.91</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hajek-LinMBD</td>
<td>0.87</td>
<td>0.85</td>
<td>0.85</td>
<td>0.87</td>
<td>0.88</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LinEBLUP</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>AW</td>
<td>Hajek-TrMBD</td>
<td>1753</td>
<td>22487</td>
<td>141001</td>
<td>27×10^4</td>
<td>35×10^5</td>
<td>43×10^6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HT-TrMBD</td>
<td>220</td>
<td>4426</td>
<td>33722</td>
<td>8×10^4</td>
<td>11×10^5</td>
<td>16×10^6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hajek-LinMBD</td>
<td>1007</td>
<td>19318</td>
<td>139346</td>
<td>28×10^4</td>
<td>38×10^5</td>
<td>56×10^6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LinEBLUP</td>
<td>380</td>
<td>7253</td>
<td>55498</td>
<td>13×10^4</td>
<td>20×10^5</td>
<td>31×10^6</td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Average relative bias (ARB, %), average relative RMSE (ARRMSE, %), average coverage rate (ACR) and average interval width (AW) for model-based simulation Set B.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimator</th>
<th>$\gamma = -1.0$</th>
<th>$\gamma = -0.5$</th>
<th>$\gamma = 0.0$</th>
<th>$\gamma = 0.5$</th>
<th>$\gamma = 1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARB</td>
<td>HT-TrMBD</td>
<td>4.92</td>
<td>0.66</td>
<td>0.14</td>
<td>-1.50</td>
<td>-8.75</td>
</tr>
<tr>
<td></td>
<td>Hajek-LinMBD</td>
<td>-0.21</td>
<td>0.04</td>
<td>0.12</td>
<td>0.16</td>
<td>-0.85</td>
</tr>
<tr>
<td></td>
<td>LinEBLUP</td>
<td>-0.19</td>
<td>0.04</td>
<td>0.13</td>
<td>0.17</td>
<td>-0.77</td>
</tr>
<tr>
<td>ARRMSE</td>
<td>HT-TrMBD</td>
<td>0.38</td>
<td>0.35</td>
<td>0.33</td>
<td>0.37</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Hajek-LinMBD</td>
<td>0.56</td>
<td>0.36</td>
<td>0.34</td>
<td>0.53</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>LinEBLUP</td>
<td>0.38</td>
<td>0.30</td>
<td>0.29</td>
<td>0.36</td>
<td>0.56</td>
</tr>
<tr>
<td>ACR</td>
<td>HT-TrMBD</td>
<td>0.94</td>
<td>0.92</td>
<td>0.92</td>
<td>0.91</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Hajek-LinMBD</td>
<td>0.91</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>LinEBLUP</td>
<td>0.93</td>
<td>0.94</td>
<td>0.94</td>
<td>0.93</td>
<td>0.92</td>
</tr>
<tr>
<td>AW</td>
<td>HT-TrMBD</td>
<td>0.04</td>
<td>2.50</td>
<td>211</td>
<td>29070</td>
<td>5x10^6</td>
</tr>
<tr>
<td></td>
<td>Hajek-LinMBD</td>
<td>0.06</td>
<td>2.70</td>
<td>214</td>
<td>38660</td>
<td>13x10^6</td>
</tr>
<tr>
<td></td>
<td>LinEBLUP</td>
<td>0.05</td>
<td>2.60</td>
<td>214</td>
<td>33442</td>
<td>10x10^6</td>
</tr>
</tbody>
</table>

Table 4 Average relative bias (ARB, %), average relative RMSE (ARRMSE, %) and average coverage rate (ACR) for design-based simulation using AAGIS data. Simulation standard errors of ARB and ARRMSE are shown in parentheses.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Estimator</th>
<th>Average of 29 regions</th>
<th>Average of 28 regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARB</td>
<td>HT-TrMBD</td>
<td>1.96 (0.20)</td>
<td>1.92 (0.11)</td>
</tr>
<tr>
<td></td>
<td>Hajek-LinMBD</td>
<td>-2.13 (0.15)</td>
<td>-2.21 (0.12)</td>
</tr>
<tr>
<td></td>
<td>LinEBLUP</td>
<td>2.98 (0.18)</td>
<td>3.36 (0.16)</td>
</tr>
<tr>
<td></td>
<td>PseudoEBLUP</td>
<td>4.01 (0.22)</td>
<td>4.41 (0.20)</td>
</tr>
<tr>
<td></td>
<td>JL</td>
<td>1.89 (0.19)</td>
<td>2.23 (0.17)</td>
</tr>
<tr>
<td>ARRMSE</td>
<td>HT-TrMBD</td>
<td>21.93 (4.47)</td>
<td>17.41 (1.18)</td>
</tr>
<tr>
<td></td>
<td>Hajek-LinMBD</td>
<td>20.15 (3.80)</td>
<td>16.91 (2.20)</td>
</tr>
<tr>
<td></td>
<td>LinEBLUP</td>
<td>19.87 (1.78)</td>
<td>19.30 (1.63)</td>
</tr>
<tr>
<td></td>
<td>PseudoEBLUP</td>
<td>22.42 (2.52)</td>
<td>21.95 (2.46)</td>
</tr>
<tr>
<td></td>
<td>JL</td>
<td>20.97 (1.48)</td>
<td>20.48 (1.31)</td>
</tr>
<tr>
<td>ACR</td>
<td>HT-TrMBD</td>
<td>0.89</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Hajek-LinMBD</td>
<td>0.93</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>LinEBLUP</td>
<td>0.85</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Figure 1. Area specific results for HT-TrMBD (thick line, 0), LinEBLUP (thin line Δ) and Hajek-LinMBD (dashed line, Δ) under parameter sets 1 (ParA1), 3 (ParA3), 5 (ParA5) and 6 (ParA6). Left column is RB (%) and right column is RRMSE (%).
Figure 2. Region-specific simulation results for HT-TrMBD (thick line, 0), LinEBLUP (thin line Δ) and Hajek-LinMBD (dashed line, Δ) in design-based simulations based on the AAGIS data. Plots show (in order from the top), RB (%), RRMSE (%) and CR. Regions are ordered in terms of increasing population size.