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Time Series

Definition (Time Series)
A time series is a collection of random variables indexed according to
the order they are obtained in time.

Objective
The primary objective of time series analysis is to develop statistical
models to forecast the future behavior of the system.
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Box-Jenkins Model

In 1976, Box and Jenkins introduced their celebrated
Autoregressive Moving Average (ARMA) model for analyzing
stationary time series.

A special case of an ARMA model is Autoregressive (AR), which
merely includes the autoregressive component.

Despite their simplicity, AR models have a wide range of
applications spanning from genetics and medical sciences to
finance and engineering.
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Autoregressive Model
An AR model with the order p, denoted by AR(p), is

Yt= φ1Yt−1 + · · ·+ φpYt−p +Wt ,

where Wt is a Gaussian white noise with the mean function
E[Wt] = 0 and variance V ar(Wt) = σ2

W .

Partial Autocorrelation Function (PACF) for an AR(10) model:
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Fitting an AR Model in Big Data Regime

In problems involving big time series data, fitting an appropriate
AR model amounts to the solutions of many potentially large scale
Ordinary Least Squares (OLS) problems.

Question
Can a randomized sub-sampling algorithm be designed to greatly
speed-up such model fitting for big time series data?
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Large OLS Problems
In several statistical models, solving an over-determined OLS
problem

min
φ
||Xφ− y||2 ,

involving an n× p data matrix X and an n× 1 observation
vector y is of interest.

In big data regimes where n� p, näıvely solving an OLS problem
which takes O(np2) can be costly.

Randomized Numerical Linear Algebra (RandNLA) has
successfully employed various random sub-sampling strategies to
compress the underlying data matrix into a smaller one, while
approximately retaining many of its original properties.
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RandNLA
RandNLA subroutines involve construction of appropriate
sub-sampling matrix, S ∈ Rs×n for p ≤ s� n, and compressing
the data matrix into a smaller version SX ∈ Rs×p.

In the classical OLS problem, RandNLA can readily be applied to
the smaller scale problem

min
φs

||SXφs − Sy||2 ,

at much lower costs.

Question
If φ? and φ?

s are the solutions of the original OLS problem and the
smaller scale problem, respectively, how they would relate to each other?
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Error Bounds

Theorem (Drineas, Mahoney, Muthukrishnan and Sarlós)
If s is large enough, for an appropriate sub-sampling matrix S , with
high probability, we have

||Xφ? − y||2 ≤ ||Xφ?
s − y||2 ≤ (1 +O(ε))||Xφ? − y||2 .

Question
How an appropriate sub-sampling matrix S could be constructed?
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Leverage Score Sampling

Sampling Scheme
Among many different strategies, those schemes based on statistical
leverage scores have not only shown to improve worst-case theoretical
guarantees of matrix algorithms, but also they are amenable to
high-quality numerical implementations.

Definition
Give the n× p data matrix X, the leverage scores are denoted by
`n,p(i) for i = 1, . . . , n and defined as the ith diagonal element of the
hat matrix H given by H:= X(XᵀX)−1Xᵀ .

It can be shown that `n,p(i) ≥ 0 for i = 1, . . . , n and∑n
i=1 `n,p(i) = p , implying that {πn,p(i) := `n,p(i)/p}n

i=1 defines a
sampling distribution over the rows of X .
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Computational Complexity

Clearly, obtaining the leverage scores is almost as costly as solving
the original OLS problem, that is O(np2).

However, some randomized approximation algorithms have been
developed, which efficiently estimate the leverage scores in
O(np logn+ p3).

Question
Due to the special structure of the data matrix in AR models, can we
develop a more efficient algorithm to approximate the leverage scores?
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Notation
Let y1, . . . , yn be a time series realization of the AR(p) model

Yt = φ1Yt−1 + · · ·+ φpYt−p +Wt .

The data matrix is given by

Xn,p:=



y1 y2 · · · yp

y2 y3 · · · yp+1

...
...

. . .
...

yn−p yn−p+1 · · · yn−1


,

and the observation vector is

yn,p =
[
yp+1 yp+2 · · · yn

]ᵀ
.
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Estimate

The least square estimate of the parameters is given by

φn,p:= (Xᵀ
n,pXn,p)−1X

ᵀ
n,pyn,p .

Sum square of residuals is:

||rn,p||2:= ||yn,p −Xn,pφn,p||2 =
n−p∑
i=1

r2
n,p(i) ,

where

rn,p(i):= yp+i − 〈Xn,p(i, :),φn,p〉 for i = 1, . . . , n− p .
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Calculating Exact Leverage Scores

Theorem (E., Roosta, Nazari and Mahoney)
Let y1, . . . , yn be a time series data. The leverage scores of an AR(1)
model is given by

`n,1(i)= y2
i

n−1∑
t=1

y2
t

for i = 1, . . . , n− 1 .

For an AR(p) model with p ≥ 2, the leverage scores are obtained by the
following recursion:

`n,p(i) = `n−1,p−1(i) +
r2

n−1,p−1(i)
||rn−1,p−1||2

.
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Finding Approximate Leverage Scores

Definition (E., Roosta, Nazari and Mahoney)
Motivated from the exact recursive equation for the leverage scores, we
define an approximate leverage score through the following recursion:

ˆ̀
n,p(i) = ˆ̀

n−1,p−1(i) +
r̂2

n−1,p−1(i)
||r̂n−1,p−1||2

for p ≥ 2 , i = 1, . . . , n− p ,

where r̂n,p is the residual vector, when the parameters are estimated by
a compressed data matrix sub-sampled based on the leverage scores
sampling distribution.
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Theoretical Error Bound

Theorem (E., Roosta, Nazari and Mahoney)
If the sub-sample size s is large enough, with high probability, we have,

|`n,p(i)− ̂̀n,p(i)|
`n,p(i) ≤ ηn,p(p− 1)

√
ε for i = 1, . . . , n− p ,

where ηn,p is a bounded constant calculated based on the data matrix
Xn,p .

Corrolary
The time complexity of this approximation for estimating the leverage
scores is O(n) .
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LSAR: Leverage Score Sampling Algorithm for AR Models
1 Set h = 1 and p̄ large enough;

2 Compute the approximate leverage scores ˆ̀
n,h(i);

3 Construct the sampling distribution π̂n,h(i) =
ˆ̀

n,h(i)
h ;

4 Form the s× n sampling matrix S by randomly choosing s rows of
the corresponding identity matrix according to the probability
distribution found in Step 3, with replacement;

5 Construct the sampled data matrix X̂n,h = SXn,h and response
vector ŷn,h = Syn,h;

6 Solve the associated reduced OLS problem to estimate the
parameters φ̂n,h , residuals r̂n,h and the estimated PACF in lag h;

7 if h < p̄, increment h = h+ 1 and go to Step 2, otherwise Stop.
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vector ŷn,h = Syn,h;

6 Solve the associated reduced OLS problem to estimate the
parameters φ̂n,h , residuals r̂n,h and the estimated PACF in lag h;

7 if h < p̄, increment h = h+ 1 and go to Step 2, otherwise Stop.

Ali Eshragh Leverage Score Sampling and Big Time Series Data



Time Series Forecasting
Randomized Numerical Linear Algebra

Big Time Series Data and RandNLA

Theoretical Results
Empirical Results
Future Work

LSAR: Leverage Score Sampling Algorithm for AR Models
1 Set h = 1 and p̄ large enough;

2 Compute the approximate leverage scores ˆ̀
n,h(i);

3 Construct the sampling distribution π̂n,h(i) =
ˆ̀

n,h(i)
h ;

4 Form the s× n sampling matrix S by randomly choosing s rows of
the corresponding identity matrix according to the probability
distribution found in Step 3, with replacement;

5 Construct the sampled data matrix X̂n,h = SXn,h and response
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Synthetic Big Time Series Data: AR(20)

(a) Exact PACF (b) Estimated PACF (c) Time
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Synthetic Big Time Series Data: AR(100)

(a) Exact PACF (b) Estimated PACF (c) Time
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Real-world Big Time Series Data: Gas Sensors Data

(a) Exact PACF (b) Estimated PACF (c) Time
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Real-world Big Time Series Data: Gas Sensors Data

(a) Relative Error of Estimates:

→ ||φ̂n,p − φn,p||
||φn,p||

(b) Ratio of Residual l2-Norms:

→ ||r̂n,p||
||rn,p||
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Further Development

Studying these theoretical results extensively on a wide
range of empirical big time series data.

Developing similar theoretical results for a more general
ARMA model.

Developing similar theoretical results for a Multivariate AR
model.
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Data Science Down Under Workshop

Further information:   carma.newcastle.edu.au/meetings/dsdu/   or   dsdu@newcastle.edu.au 
Venue:  NewSpace, The University of Newcastle,  8-12 December 2019. 

Data Science Down Under 8-12 December 2019, Newcastle, Australia 

Organising committee: Ali Eshragh (Chair; UoN), Fred Roosta (Co-chair; UQ), 
Ricardo Campello (UoN), Elizabeth Stojanovski (UoN), Natalie Thamwattana (UoN) 

҉  
     8 December — 10 December 
҉  
     11 December — 12 December 

Abstract submission closes: 
Friday 30th August 

 

Registration closes: 
Friday 6th November 

 

This workshop will bring together Australian re-
searchers and practitioners with key international 
academics in areas related to data science — in-
cluding mathematics, statistics and computer sci-
ence — to discuss recent work and to share ideas, 
and fostering new local and international collabora-
tions.  The inaugural theme of the Boot Camp will 
be ‘Randomised Numerical Linear Algebra’, while 
the Recent Advances will cover a diverse range 
of topics from machine learning and data analysis.  

Kenneth Clarkson 
IBM Research, USA 

Michael Mahoney 
University of California, Berkeley, USA 

Kerrie Mengersen 
Queensland University of Technology, Australia 

Deanna Needell 
UCLA, USA 

Joshua Ross 
University of Adelaide, Australia 

Kate Smith-Miles 
University of Melbourne, Australia 

Peter Taylor 
University of Melbourne, Australia 

Matt Wand 
University of Technology Sydney, Australia 

David Woodruff 
Carnegie Mellon University, USA 

Peng Xu 
Amazon AI Lab, USA 
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End

Thank you · · · Questions?
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