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Autoregressive Model

Time Series

Definition (Time Series)

A time series is a collection of random variables indexed according to
the order they are obtained in time.
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Time Series Forecasting Introduction

Autoregressive Model

Time Series

Definition (Time Series)

A time series is a collection of random variables indexed according to
the order they are obtained in time.

Objective

The primary objective of time series analysis is to develop statistical
models to forecast the future behavior of the system.
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Box-Jenkins Model

@ In 1976, Box and Jenkins introduced their celebrated
Autoregressive Moving Average (ARMA) model for analyzing
stationary time series.
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Autoregressive Model

Box-Jenkins Model

@ In 1976, Box and Jenkins introduced their celebrated
Autoregressive Moving Average (ARMA) model for analyzing
stationary time series.

@ A special case of an ARMA model is Autoregressive (AR), which
merely includes the autoregressive component.
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Autoregressive Model

Box-Jenkins Model

@ In 1976, Box and Jenkins introduced their celebrated
Autoregressive Moving Average (ARMA) model for analyzing
stationary time series.

@ A special case of an ARMA model is Autoregressive (AR), which
merely includes the autoregressive component.

@ Despite their simplicity, AR models have a wide range of
applications spanning from genetics and medical sciences to
finance and engineering.
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Autoregressive Model

Autoregressive Model

@ An AR model with the order p, denoted by AR(p), is
Yi=p1Yi1+ -+ Y p + Wy,

where W, is a Gaussian white noise with the mean function
E[W;] = 0 and variance Var(W,) = o3, .

Ali Eshragh Leverage Score Sampling and Big Time Series Data



Time Series Forecasting e

Autoregressive Model

Autoregressive Model

@ An AR model with the order p, denoted by AR(p), is
Yi=p1Yi1+ -+ Y p + Wy,
where W, is a Gaussian white noise with the mean function
E[W;] = 0 and variance Var(W,) = o3, .

@ Partial Autocorrelation Function (PACF) for an AR(10) model:
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Autoregressive Model

Fitting an AR Model in Big Data Regime

@ In problems involving big time series data, fitting an appropriate
AR model amounts to the solutions of many potentially large scale
Ordinary Least Squares (OLS) problems.
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Autoregressive Model

Fitting an AR Model in Big Data Regime

@ In problems involving big time series data, fitting an appropriate
AR model amounts to the solutions of many potentially large scale
Ordinary Least Squares (OLS) problems.

Can a randomized sub-sampling algorithm be designed to greatly
speed-up such model fitting for big time series data?
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Introduction

Randomized Numerical Linear Algebra ¥
Background

Large OLS Problems

@ In several statistical models, solving an over-determined OLS
problem

m(;n||ng—y||2,

involving an n x p data matrix X and an n x 1 observation
vector y is of interest.

Ali Eshragh Leverage Score Sampling and Big Time Series Data



Introduction

Randomized Numerical Linear Algebra ¥
Background

Large OLS Problems

@ In several statistical models, solving an over-determined OLS
problem

m(;n||ng—y||2,

involving an n x p data matrix X and an n x 1 observation
vector y is of interest.

@ In big data regimes where n > p, naively solving an OLS problem
which takes O(np?) can be costly.
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Introduction

Randomized Numerical Linear Algebra ¥
Background

Large OLS Problems

@ In several statistical models, solving an over-determined OLS
problem

min| [ X ¢~ y||*,

involving an n x p data matrix X and an n x 1 observation
vector y is of interest.

@ In big data regimes where n > p, naively solving an OLS problem
which takes O(np?) can be costly.

@ Randomized Numerical Linear Algebra (RandNLA) has
successfully employed various random sub-sampling strategies to
compress the underlying data matrix into a smaller one, while
approximately retaining many of its original properties.
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Randomized Numerical Linear Algebra Background

RandNLA

@ RandNLA subroutines involve construction of appropriate
sub-sampling matrix, S € R**" for p < s < n, and compressing
the data matrix into a smaller version SX € R%*P.
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Introduction

Randomized Numerical Linear Algebra Background

RandNLA

@ RandNLA subroutines involve construction of appropriate
sub-sampling matrix, S € R**" for p < s < n, and compressing
the data matrix into a smaller version SX € R%*P.

@ In the classical OLS problem, RandNLA can readily be applied to
the smaller scale problem

min 1SX ¢, — Sy|?,

at much lower costs.
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Introduction

Randomized Numerical Linear Algebra Background

RandNLA

@ RandNLA subroutines involve construction of appropriate
sub-sampling matrix, S € R**" for p < s < n, and compressing
the data matrix into a smaller version SX € R%*P.

@ In the classical OLS problem, RandNLA can readily be applied to
the smaller scale problem

min 1SX ¢, — Sy|?,

at much lower costs.

If ¢* and ¢ are the solutions of the original OLS problem and the
smaller scale problem, respectively, how they would relate to each other?
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Randomized Numerical Linear Algebra Background

Error Bounds

Theorem (Drineas, Mahoney, Muthukrishnan and Sarl6s)

If s is large enough, for an appropriate sub-sampling matrix S, with
high probability, we have

1Xe" —yll* < [IX; — gl < (1+0(e)|| X" —yl>.
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Introduction

Randomized Numerical Linear Algebra Background

Error Bounds

Theorem (Drineas, Mahoney, Muthukrishnan and Sarl6s)

If s is large enough, for an appropriate sub-sampling matrix S, with
high probability, we have

1Xe" —yll* < [IX; — gl < (1+0(e)|| X" —yl>.

How an appropriate sub-sampling matrix S could be constructed?
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Randomized Numerical Linear Algebra Background

Leverage Score Sampling

Sampling Scheme

Among many different strategies, those schemes based on statistical
leverage scores have not only shown to improve worst-case theoretical
guarantees of matrix algorithms, but also they are amenable to
high-quality numerical implementations.
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Introduction

Randomized Numerical Linear Algebra Background

Leverage Score Sampling

Sampling Scheme

Among many different strategies, those schemes based on statistical
leverage scores have not only shown to improve worst-case theoretical
guarantees of matrix algorithms, but also they are amenable to
high-quality numerical implementations.

Definition
Give the n x p data matrix X, the leverage scores are denoted by

Cyp(i) fori=1,...,n and defined as the i‘" diagonal element of the
hat matrix H given by H:= X (X"X)"1XT.

A
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Introduction

Randomized Numerical Linear Algebra Background

Leverage Score Sampling

Sampling Scheme

Among many different strategies, those schemes based on statistical
leverage scores have not only shown to improve worst-case theoretical
guarantees of matrix algorithms, but also they are amenable to
high-quality numerical implementations.

Definition
Give the n x p data matrix X, the leverage scores are denoted by

Cyp(i) fori=1,...,n and defined as the i‘" diagonal element of the
hat matrix H given by H:= X (X"X)"1XT.

A

@ It can be shown that ¢,, ,(i) > 0 fori =1,...,n and
Yor i Uy (i) = p, implying that {7, ,(i) := £, ,(¢)/p}7_, defines a
sampling distribution over the rows of X .
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Randomized Numerical Linear Algebra Background

Computational Complexity

@ Clearly, obtaining the leverage scores is almost as costly as solving
the original OLS problem, that is O(np?).
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Introduction

Randomized Numerical Linear Algebra Background

Computational Complexity

@ Clearly, obtaining the leverage scores is almost as costly as solving
the original OLS problem, that is O(np?).

@ However, some randomized approximation algorithms have been
developed, which efficiently estimate the leverage scores in
O(nplogn + p?).
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Introduction

Randomized Numerical Linear Algebra Background

Computational Complexity

@ Clearly, obtaining the leverage scores is almost as costly as solving
the original OLS problem, that is O(np?).

@ However, some randomized approximation algorithms have been
developed, which efficiently estimate the leverage scores in
O(nplogn + p?).

Due to the special structure of the data matrix in AR models, can we
develop a more efficient algorithm to approximate the leverage scores?
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© Big Time Series Data and RandNLA
@ Theoretical Results
@ Empirical Results
@ Future Work
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Notation

@ Let y1,...,y, be a time series realization of the AR(p) model

Y't:¢1Y1€—1+"'+¢th—p+Wt-
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Notation

@ Let y1,...,y, be a time series realization of the AR(p) model

Y't:¢1Y1€—1+"'+¢th—p+Wt-

@ The data matrix is given by

Y1 Y2 o Yp
Y2 Y3 T Yptl
Xn,p = P
Yn—p Yn—p+1 °° Yn-1

and the observation vector is

T
Yn,p = [ Yp+1 Yp+2 - YUn ] .
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Estimate

@ The least square estimate of the parameters is given by

d)n,p:: (X;_’an_’p)ing’pyn’p .
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Estimate

@ The least square estimate of the parameters is given by

d)n,p:: (X;_’an_’p)ing’pyn’p .

@ Sum square of residuals is:

n—p
17l 2= [ — Xnpugll? = > 72 ,(0),
=1

where

Tnp(1):=Ypti — (X p(,1), Pnyp) fori=1,....n—p.
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Calculating Exact Leverage Scores

Theorem (E., Roosta, Nazari and Mahoney)

Let y1,...,y, be a time series data. The leverage scores of an AR(1)
model is given by

U-2
lya(i)= —"— fori=1,...,n—1.

n—1

> vt
=

For an AR(p) model with p > 2, the leverage scores are obtained by the
following recursion:

T%—l,p—l(i)

en, (Z) = gn—l, —1(7:) == .
! ! IPn—1,p—1]?
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Finding Approximate Leverage Scores

Definition (E., Roosta, Nazari and Mahoney)

Motivated from the exact recursive equation for the leverage scores, we
define an approximate leverage score through the following recursion:

TA'?Lfl,pfl (Z)

|[Pn—1,p—1][?

N

b p(3) = 1 p—1(2) + forp>2,i=1,...,n—p,
where ,, ,, is the residual vector, when the parameters are estimated by
a compressed data matrix sub-sampled based on the leverage scores
sampling distribution.
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Theoretical Error Bound

Theorem (E., Roosta, Nazari and Mahoney)

If the sub-sample size s is large enough, with high probability, we have,
|€np(8) = Lnp ()]
Cn.p(4)

where 1, ,, is a bounded constant calculated based on the data matrix
X

Sﬁn,p(p—l)ﬁ forizl,...,n—p,

n,p -
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Theoretical Error Bound

Theorem (E., Roosta, Nazari and Mahoney)

If the sub-sample size s is large enough, with high probability, we have,
|€np(8) = Lnp ()]
Cn.p(4)

where 1, ,, is a bounded constant calculated based on the data matrix
X

Sﬁn,p(p—l)ﬁ forizl,...,n—p,

n,p -

The time complexity of this approximation for estimating the leverage
scores is O(n) .
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LSAR: Leverage Score Sampling Algorithm for AR Models

@ Set h =1 and p large enough;
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LSAR: Leverage Score Sampling Algorithm for AR Models

@ Set h =1 and p large enough;

@ Compute the approximate leverage scores [?7,,7;,,(2');
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LSAR: Leverage Score Sampling Algorithm for AR Models

@ Set h =1 and p large enough;
@ Compute the approximate leverage scores [?7,,7;,,(2');

© Construct the sampling distribution 7, , (i) = %
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LSAR: Leverage Score Sampling Algorithm for AR Models

@ Set h =1 and p large enough;
@ Compute the approximate leverage scores [?7,,7;,,(2');
© Construct the sampling distribution 7, , (i) = %

@ Form the s x n sampling matrix S by randomly choosing s rows of
the corresponding identity matrix according to the probability
distribution found in Step 3, with replacement;
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LSAR: Leverage Score Sampling Algorithm for AR Models

@ Set h =1 and p large enough;
@ Compute the approximate leverage scores [?7,,7;,,(2');
© Construct the sampling distribution 7, , (i) = %

@ Form the s x n sampling matrix S by randomly choosing s rows of
the corresponding identity matrix according to the probability
distribution found in Step 3, with replacement;

@ Construct the sampled data matrix X'n?h = S5X,, 1, and response
vector Yp p = SYn h;
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LSAR: Leverage Score Sampling Algorithm for AR Models

@ Set h =1 and p large enough;
@ Compute the approximate leverage scores [?7,,7;,,(2');
© Construct the sampling distribution 7, , (i) = %

@ Form the s x n sampling matrix S by randomly choosing s rows of
the corresponding identity matrix according to the probability
distribution found in Step 3, with replacement;

@ Construct the sampled data matrix X'n?h = S5X,, 1, and response
vector Yp p = SYn h;

@ Solve the associated reduced OLS problem to estimate the
parameters ¢,, j, , residuals 7, ;, and the estimated PACF in lag h;
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LSAR: Leverage Score Sampling Algorithm for AR Models

@ Set h =1 and p large enough;
@ Compute the approximate leverage scores [?7,,7;,,(2');
© Construct the sampling distribution 7, , (i) = %

@ Form the s x n sampling matrix S by randomly choosing s rows of
the corresponding identity matrix according to the probability
distribution found in Step 3, with replacement;

@ Construct the sampled data matrix X'n?h = S5X,, 1, and response
vector Yp p = SYn h;

@ Solve the associated reduced OLS problem to estimate the
parameters ¢,, j, , residuals 7, ;, and the estimated PACF in lag h;

@ if h < p, increment h = h + 1 and go to Step 2, otherwise Stop.
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Synthetic Big Time Series Data: AR(100

04 1000

—eslin;ale
02 800 | —exact
600
0
400
-0.2 200
-0.4 . 0
0 50 100 150 200 0 50 100 150 200 50 100 150 200
Lag Lag Lag
(a) Exact PACF (b) Estimated PACF (c) Time

Ali Eshragh Leverage Score Sampling and Big Time Series Data



Theoretical Results

Empirical Results
Big Time Series Data and RandNLA Future Work

Real-world Big Time Series Data: Gas Sensors Data
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Further Development

@ Studying these theoretical results extensively on a wide
range of empirical big time series data.
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Further Development

@ Studying these theoretical results extensively on a wide
range of empirical big time series data.

@ Developing similar theoretical results for a more general
ARMA model.
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Further Development

@ Studying these theoretical results extensively on a wide
range of empirical big time series data.

@ Developing similar theoretical results for a more general
ARMA model.

@ Developing similar theoretical results for a Multivariate AR
model.
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Data Science Down Under Workshop
Data Science

8-12 December 2019, Newcastle, Australia
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and fostering and international
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be ‘Randomised Numerica Linear
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Venie: NewSpace, The Universty of Newsastl, 8:13 December 2015,

Organising committee: Al Eshragh (Chair; UoN), Fred Roosta (Co-chair; UQ),
Ricardo Campello (UoN), Elizabeth Stojanovski (UoN), Natalie Thamwatana (UoN)
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Thank you - -- Questions?
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