Robust Multi-view Graph Embedding

Akifumi Okuno 1,2 Hidetoshi Shimodaira 1,2

1Graduate School of Informatics, Kyoto University, Japan
2RIKEN Center for Advanced Intelligence Project, Japan

International Conference on Robust Statistics 2017
Table of contents

Existing methods
 Graph Embedding (GE)
 Cross-Domain Matching Correlation Analysis (CDMCA)
 Relation to Canonical Correlation Analysis (CCA)

Iteratively-Reweighted CDMCA (Proposed method)
 Purpose of this study
 Iteratively-Reweighted CDMCA (IR-CDMCA)
 Theoretical guarantee of convergence

Numerical experiments
 Setting
 Experiment 1: Verification of robustness
 Experiment 2: Comparison with existing methods

Conclusion

References
Graph embedding (GE)

Yan et al. (2007) proposed a method for dimensionality reduction based on graph-embedding with known graph-structured links.
Cross-Domain Matching Correlation Analysis (CDMCA)

Shimodaira (2016) extended Yan et al. (2007) as CDMCA.
Cross-Domain Matching Correlation Analysis (CDMCA)

- $x_i^{(d)} \in \mathbb{R}^{p_d}$: data vector,
Cross-Domain Matching Correlation Analysis (CDMCA)

- $x_i^{(d)} \in \mathbb{R}^{p_d}$: data vector,
- $w_{ij}^{(de)} \geq 0$ represents the strength of association between $x_i^{(d)}$ and $x_j^{(e)}$.
Cross-Domain Matching Correlation Analysis (CDMCA)

- \(x_i^{(d)} \in \mathbb{R}^{p_d} \): data vector,
- \(w_{ij}^{(de)} \geq 0 \) represents the strength of association between \(x_i^{(d)} \) and \(x_j^{(e)} \).

\[i \in [n_d], j \in [n_e], d \in [D], e \in [D], \]

where \([n]\) represents a set \(\{1, 2, \ldots, n\}\).
Cross-Domain Matching Correlation Analysis (CDMCA)

$\mathbf{A}^{(d)} \in \mathbb{R}^{p_d \times K}$: linear transform matrices to be estimated, so that

$$
\begin{align*}
\mathbf{w}_{ij}^{(de)} > 0 & \implies \mathbf{A}^{(d)\top} \mathbf{x}_i^{(d)} \approx \mathbf{A}^{(e)\top} \mathbf{x}_j^{(e)}.
\end{align*}
$$

- $\mathbf{x}_i^{(d)} \in \mathbb{R}^{p_d}$: data vector,
- $\mathbf{w}_{ij}^{(de)} \geq 0$ represents the strength of association between $\mathbf{x}_i^{(d)}$ and $\mathbf{x}_j^{(e)}$.

$i \in [n_d], j \in [n_e], d \in [D], e \in [D]$, where $[n]$ represents a set $\{1, 2, \ldots, n\}$.

$\mathbf{w}_{ij}^{(de)}$.
Cross-Domain Matching Correlation Analysis (CDMCA)

CDMCA finds \(\{ \hat{\mathbf{A}}^{(d)} \} \) that minimizes

\[
\phi_0(\mathbf{A}; \mathbf{X}, \mathbf{W}) := \sum_{d=1}^{D} \sum_{e=1}^{D} \sum_{i=1}^{n_d} \sum_{j=1}^{n_e} \hat{w}_{ij}^{(de)} \| \mathbf{A}^{(d)\top} \mathbf{x}_i^{(d)} - \mathbf{A}^{(e)\top} \mathbf{x}_j^{(e)} \|_2^2,
\]

where \(\mathbf{W} \succ 0 \) and \(\hat{w}_{ij}^{(de)} := w_{ij}^{(de)} \sum_{d=1}^{D} \sum_{e=1}^{D} \sum_{i=1}^{n_d} \sum_{j=1}^{n_e} w_{ij}^{(de)} \). It can efficiently be solved by eigendecomposition. For \(D = 2 \), CDMCA is equivalent to Cross-view Graph Embedding (Huang et al., 2012; CvGE).
Cross-Domain Matching Correlation Analysis (CDMCA)

CDMCA finds \(\{ \hat{A}^{(d)} \} \) that minimizes

\[
\phi_0(A; X, W) := \sum_{d=1}^{D} \sum_{e=1}^{D} \sum_{i=1}^{n_d} \sum_{j=1}^{n_e} \tilde{w}_{ij}^{(de)} \| A^{(d)\top} x_i^{(d)} - A^{(e)\top} x_j^{(e)} \|_2^2,
\]

with a constraint

\[
\sum_{d=1}^{D} A^{(d)\top} C^{(d)} A^{(d)} = I_K,
\]

where \(C^{(d)} \succ 0 \) and \(\tilde{w}_{ij}^{(de)} := w_{ij}^{de} / \sum_{d=1}^{D} \sum_{e=1}^{D} \sum_{i=1}^{n_d} \sum_{j=1}^{n_e} w_{ij}^{de} \).

It can efficiently be solved by eigendecomposition. For \(D = 2 \), CDMCA is equivalent to Cross-view Graph Embedding (Huang et al., 2012; CvGE).
CDMCA is an extension of Canonical Correlation Analysis (CCA)

Figure: one-to-one relationship (↔ CCA)

Figure: many-to-many relationship (↔ CDMCA)
Purpose of this study

Our purpose is to reduce the adverse effect of improper associations.
What we do:

We **downweight** wrong associations.
Proposed algorithm

Iteratively-Reweighted CDMCA (IR-CDMCA)

- $\gamma > 0$ is a tuning parameter.
 - $\hat{A}_{(0)} \leftarrow \text{CDMCA}(X, W)$.
 - $t \leftarrow 0$.
 - Compute a weight $R_{(t)} := (r_{ij}^{(de)})$ by
 \[r_{ij}^{(de)} := \exp \left(-\gamma \| \hat{A}_{(t)}^{(d)^\top} x_{i}^{(d)} - \hat{A}_{(t)}^{(e)^\top} x_{j}^{(e)} \|^2_2 \right) \]
 - update transformation matrix
 $\hat{A}_{(t+1)} \leftarrow \text{CDMCA}(X, W \circ R_{(t)})$.
 - $t \leftarrow t + 1$
 - Iterate these steps until convergence

$w_{ij}^{(de)} r_{ij}^{(de)}$ is expected to be small if $w_{ij}^{(de)}$ is false-positive.
IR-CDMCA monotonically reduces a loss function

\[
\phi_{\gamma}(A; X, W) := -\frac{1}{\gamma} \log \sum_{d=1}^{D} \sum_{e=1}^{D} \sum_{i=1}^{n_d} \sum_{j=1}^{n_e} \tilde{w}_{ij}^{(de)} \times \exp \left(-\gamma \| A^{(d)}^\top x_i^{(d)} - A^{(e)}^\top x_j^{(e)} \|_2^2 \right)
\]

as \(\phi_{\gamma}(\hat{A}(t); X, W) \geq \phi_{\gamma}(\hat{A}(t+1); X, W) \).

This function \(\phi_{\gamma}(A; X, W) \) is analogous to \(\gamma \)-divergence (Fujisawa and Eguchi, 2008).

Theorem

\(\phi_{\gamma}(\hat{A}(t); X, W), \ (t = 1, 2, \ldots) \) converges.

These theorems indicate the termination of our algorithm.
Due to the following theorem, IR-CDMCA can be regarded as a generalization of CDMCA.

Theorem

\[
\phi_\gamma(A; X, W) \rightarrow \phi_0(A; X, W), \text{ as } \gamma \downarrow 0.
\]

Recall that

- CDMCA minimizes \(\phi_0(A; X, W) \) s.t. \(A \in S(C) \),
- IR-CDMCA minimizes \(\phi_\gamma(A; X, W) \) s.t. \(A \in S(C) \),

where

\[
S(C) := \left\{ A = (A^{(1)^T}, \ldots, A^{(D)^T})^T \left| \sum_{d=1}^{D} A^{(d)^T} C^{(d)} A^{(d)} = I \right. \right\}.
\]
Simulation settings

(1) Underlying common data structure in $\mathbb{R}^{p_0} = \mathbb{R}^2$:

$$x_i^{(0)} := (\cos 2\pi i/10, \sin 2\pi i/10) \in \mathbb{R}^2.$$

(2) Generate vectors sharing the structure by

$$x^{(d)}_{ij} \sim \mathcal{N}[B^{(d)\top} x_i^{(0)}, \sigma^2 I_{p_d}],$$

$$j = 1, 2, \ldots, 10; \ i = 1, 2, \ldots, 10.$$

(3) Associate all vectors in the same class across views ($= \bar{W}_0$).

(4) Resample these links at rate $\alpha \in (0, 1)$ ($= W_0$).

(5) Associate vectors in the different class at rate $\xi \geq 0$ ($= W_\xi$).
Illustrative example \((\alpha = 0.5, \sigma = 0.2)\)

(a) \(W_0\)

(b) \(W_1\) (Cont.)

Figure: CDMCA (existing method)

(a) \(W_0\)

(b) \(W_1\) (Cont.)

Figure: IR-CDMCA with \(\gamma = 1\) (proposed method)
Experiment 1: Verification of robustness

Setting: \(D = 3, p_1 = p_2 = p_3 = 10, n_1 = n_2 = n_3 = 100 \)

\[
\hat{A}_\gamma := \arg \min_{A \in S(X^\top X)} \phi_\gamma(A; X, W_\xi)
\]

Error := \(\phi_0(\hat{A}_\gamma; X, W_0) \)

Table: Avg. and s.d. of errors over 100 experiments when few associations are observed (\(\alpha = 0.05 \)).

<table>
<thead>
<tr>
<th>St.Dev.</th>
<th>Method</th>
<th>(\xi = 0)</th>
<th>(\xi = 0.2)</th>
<th>(\xi = 0.6)</th>
<th>(\xi = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma = 0.4)</td>
<td>CDMCA ((\gamma = 0))</td>
<td>0.027 ± 0.008</td>
<td>0.043 ± 0.013</td>
<td>0.070 ± 0.026</td>
<td>0.087 ± 0.030</td>
</tr>
<tr>
<td></td>
<td>IR-CDMCA ((\gamma = 0.5))</td>
<td>0.027 ± 0.008</td>
<td>0.031 ± 0.010</td>
<td>0.039 ± 0.015</td>
<td>0.045 ± 0.016</td>
</tr>
<tr>
<td></td>
<td>IR-CDMCA ((\gamma = 1))</td>
<td>0.027 ± 0.008</td>
<td>0.028 ± 0.009</td>
<td>0.030 ± 0.010</td>
<td>0.033 ± 0.011</td>
</tr>
<tr>
<td>(\sigma = 1.0)</td>
<td>CDMCA ((\gamma = 0))</td>
<td>0.141 ± 0.042</td>
<td>0.181 ± 0.055</td>
<td>0.227 ± 0.058</td>
<td>0.274 ± 0.063</td>
</tr>
<tr>
<td></td>
<td>IR-CDMCA ((\gamma = 0.5))</td>
<td>0.140 ± 0.041</td>
<td>0.160 ± 0.050</td>
<td>0.194 ± 0.059</td>
<td>0.243 ± 0.071</td>
</tr>
<tr>
<td></td>
<td>IR-CDMCA ((\gamma = 1))</td>
<td>0.141 ± 0.041</td>
<td>0.157 ± 0.051</td>
<td>0.187 ± 0.063</td>
<td>0.229 ± 0.072</td>
</tr>
</tbody>
</table>

IR-CDMCA is more robust than CDMCA in this experiment.
Experiment 2: Comparison with existing methods ($D = 2$)

By resampling data vectors and links across views so that associations become one-to-one, we can apply existing methods:

- **CCA**: Canonical Correlation Analysis (Hotelling, 1936)
- **KCCA**: Kernel CCA (Lai and Fyfe, 2000)
- **RCCA**: CCA with robust covariance estimators
 - **MCD**: Minimum Covariance Discriminator (Rousseeuw, 1985)
 - **OGK**: Orthogonal Ggenendian Kettering (Maronna and Zammar, 2002)
 - **MVE**: Minimum Volume Ellipsoid (Rousseeuw, 1985)
 - **S-bi**: S-estimator with biweight (Huber, 2011)

We assess these methods by mean Average Precision score (Baeza-Yates and Ribeiro-Neto, 1999; mAP). Higher mAP indicates better retrieval precision.
Experiment 2: Comparison with existing methods ($D = 2$)

Table: Many associations are observed ($\alpha = 0.5$) and $\sigma = 1.0$.

<table>
<thead>
<tr>
<th>Method</th>
<th>$\xi = 0$</th>
<th>$\xi = 0.25$</th>
<th>$\xi = 0.5$</th>
<th>$\xi = 0.75$</th>
<th>$\xi = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCA</td>
<td>0.484 ± 0.055</td>
<td>0.408 ± 0.066</td>
<td>0.346 ± 0.061</td>
<td>0.291 ± 0.056</td>
<td>0.256 ± 0.054</td>
</tr>
<tr>
<td>KCCA ($\beta = 1$)</td>
<td>0.616 ± 0.060</td>
<td>0.530 ± 0.054</td>
<td>0.453 ± 0.062</td>
<td>0.415 ± 0.066</td>
<td>0.372 ± 0.049</td>
</tr>
<tr>
<td>KCCA ($\beta = 1.5$)</td>
<td>0.556 ± 0.076</td>
<td>0.444 ± 0.058</td>
<td>0.371 ± 0.052</td>
<td>0.337 ± 0.055</td>
<td>0.310 ± 0.050</td>
</tr>
<tr>
<td>RCCA (MCD)</td>
<td>0.443 ± 0.059</td>
<td>0.384 ± 0.072</td>
<td>0.313 ± 0.070</td>
<td>0.270 ± 0.056</td>
<td>0.230 ± 0.047</td>
</tr>
<tr>
<td>RCCA (OGK)</td>
<td>0.477 ± 0.054</td>
<td>0.434 ± 0.065</td>
<td>0.379 ± 0.068</td>
<td>0.327 ± 0.052</td>
<td>0.285 ± 0.059</td>
</tr>
<tr>
<td>RCCA (MVE)</td>
<td>0.454 ± 0.057</td>
<td>0.388 ± 0.076</td>
<td>0.323 ± 0.064</td>
<td>0.272 ± 0.059</td>
<td>0.240 ± 0.048</td>
</tr>
<tr>
<td>RCCA (S-bi)</td>
<td>0.488 ± 0.057</td>
<td>0.436 ± 0.059</td>
<td>0.384 ± 0.061</td>
<td>0.336 ± 0.062</td>
<td>0.293 ± 0.053</td>
</tr>
<tr>
<td>CDMCA ($\gamma = 0$)</td>
<td>0.518 ± 0.054</td>
<td>0.509 ± 0.053</td>
<td>0.499 ± 0.053</td>
<td>0.494 ± 0.049</td>
<td>0.487 ± 0.048</td>
</tr>
<tr>
<td>IR-CDMCA ($\gamma = 0.5$)</td>
<td>0.519 ± 0.052</td>
<td>0.518 ± 0.052</td>
<td>0.512 ± 0.053</td>
<td>0.511 ± 0.052</td>
<td>0.507 ± 0.050</td>
</tr>
<tr>
<td>IR-CDMCA ($\gamma = 1$)</td>
<td>0.521 ± 0.051</td>
<td>0.519 ± 0.052</td>
<td>0.516 ± 0.052</td>
<td>0.516 ± 0.052</td>
<td>0.514 ± 0.051</td>
</tr>
<tr>
<td>IR-CDMCA ($\gamma = 1.5$)</td>
<td>0.522 ± 0.051</td>
<td>0.520 ± 0.052</td>
<td>0.517 ± 0.052</td>
<td>0.517 ± 0.052</td>
<td>0.515 ± 0.051</td>
</tr>
</tbody>
</table>

MCD Minimum Covariance Discriminator (Rousseeuw, 1985)
OGK Orthogonal Gnenendian Kettenring (Maronna and Zamar, 2002)
MVE Minimum Volume Ellipsoid (Rousseeuw, 1985)
S-bi biweight-type S-estimator (Huber, 2011)
Experiment 2: Comparison with existing methods ($D = 2$)

Table: **Few** associations are observed ($\alpha = 0.05$) and $\sigma = 1.0$.

<table>
<thead>
<tr>
<th></th>
<th>$\xi = 0$</th>
<th>$\xi = 0.25$</th>
<th>$\xi = 0.5$</th>
<th>$\xi = 0.75$</th>
<th>$\xi = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCA</td>
<td>0.162 ± 0.022</td>
<td>0.159 ± 0.026</td>
<td>0.162 ± 0.019</td>
<td>0.163 ± 0.019</td>
<td>0.158 ± 0.022</td>
</tr>
<tr>
<td>KCCA ($\beta = 1$)</td>
<td>0.171 ± 0.018</td>
<td>0.173 ± 0.017</td>
<td>0.171 ± 0.018</td>
<td>0.165 ± 0.012</td>
<td>0.173 ± 0.018</td>
</tr>
<tr>
<td>KCCA ($\beta = 1.5$)</td>
<td>0.165 ± 0.014</td>
<td>0.169 ± 0.013</td>
<td>0.166 ± 0.014</td>
<td>0.161 ± 0.012</td>
<td>0.164 ± 0.009</td>
</tr>
<tr>
<td>RCCA (MCD)</td>
<td>0.157 ± 0.022</td>
<td>0.166 ± 0.029</td>
<td>0.165 ± 0.032</td>
<td>0.163 ± 0.023</td>
<td>0.163 ± 0.024</td>
</tr>
<tr>
<td>RCCA (OGK)</td>
<td>0.173 ± 0.030</td>
<td>0.176 ± 0.028</td>
<td>0.167 ± 0.027</td>
<td>0.170 ± 0.027</td>
<td>0.173 ± 0.023</td>
</tr>
<tr>
<td>RCCA (MVE)</td>
<td>0.168 ± 0.027</td>
<td>0.168 ± 0.027</td>
<td>0.161 ± 0.022</td>
<td>0.164 ± 0.018</td>
<td>0.164 ± 0.023</td>
</tr>
<tr>
<td>RCCA (S-bi)</td>
<td>0.162 ± 0.022</td>
<td>0.166 ± 0.023</td>
<td>0.170 ± 0.026</td>
<td>0.174 ± 0.029</td>
<td>0.173 ± 0.027</td>
</tr>
<tr>
<td>CDMCA ($\gamma = 0$)</td>
<td>0.412 ± 0.073</td>
<td>0.331 ± 0.066</td>
<td>0.300 ± 0.060</td>
<td>0.282 ± 0.060</td>
<td>0.262 ± 0.052</td>
</tr>
<tr>
<td>IR-CDMCA ($\gamma = 0.5$)</td>
<td>0.418 ± 0.073</td>
<td>0.377 ± 0.070</td>
<td>0.358 ± 0.071</td>
<td>0.339 ± 0.076</td>
<td>0.321 ± 0.061</td>
</tr>
<tr>
<td>IR-CDMCA ($\gamma = 1$)</td>
<td>0.419 ± 0.071</td>
<td>0.402 ± 0.072</td>
<td>0.383 ± 0.073</td>
<td>0.379 ± 0.076</td>
<td>0.366 ± 0.072</td>
</tr>
<tr>
<td>IR-CDMCA ($\gamma = 1.5$)</td>
<td>0.420 ± 0.070</td>
<td>0.408 ± 0.071</td>
<td>0.395 ± 0.072</td>
<td>0.394 ± 0.073</td>
<td>0.387 ± 0.075</td>
</tr>
</tbody>
</table>

MCD Minimum Covariance Discriminator (Rousseeuw, 1985)

OGK Orthogonal Gnenendian Kettenring (Maronna and Zamar, 2002)

MVE Minimum Volume Ellipsoid (Rousseeuw, 1985)

S-bi biweight-type S-estimator (Huber, 2011)
Conclusion

- We propose Iteratively-Reweighted CDMCA (IR-CDMCA), which is a robust extension of CDMCA.
- We prove the convergence of IR-CDMCA.
- IR-CDMCA outperforms CDMCA in numerical experiments.

Figure: CDMCA with cont. Figure: IR-CDMCA with cont.

References II

Solution of CDMCA

\[X = \text{Diag}[X^{(1)}, X^{(2)}, \ldots, X^{(D)}] \in \mathbb{R}^{n \times p}, \]

\[W = [W^{(de)}] \in \mathbb{R}^{n \times n} \quad (W^{(de)} = (w^{(de)}_{ij}) \in \mathbb{R}^{n_d \times n_e}), \]

\[\hat{G} = X^\top \text{diag}(W1)X \in \mathbb{R}^{p \times p}, \]

\[\hat{H} = X^\top WX \in \mathbb{R}^{p \times p}, \]

\[A = (A^{(1)}, A^{(2)}, \ldots, A^{(D)})^\top \in \mathbb{R}^{p \times K}, \]

where \(p = p_1 + p_2 + \cdots + p_D, \quad n = n_1 + n_2 + \cdots + n_D. \)

Solution of CDMCA is

\[\hat{A} = \hat{G}^{-1/2}(\hat{u}_1, \hat{u}_2, \ldots, \hat{u}_K), \]

where \(\hat{G}^{-1/2} \hat{H} \hat{G}^{-1/2} = \sum_{k=1}^{p} \hat{\lambda}_k \hat{u}_k \hat{u}_k^\top \) is eigendecomposition satisfying \(\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \cdots \geq \hat{\lambda}_p. \)
Simulation settings

- Number of views: $D = 3$
- Dimension: $p_1 = p_2 = p_3 = 10$
- Sample size: $n_1 = n_2 = n_3 = 100$
- Scatter within cluster: $\sigma > 0$
- Resampling rate: $\alpha \in (0, 1]$
- Contamination rate: $\xi \geq 0$

\[
x_{ij}^{(d)} \sim N[B^{(d)\top} x_i^{(0)}, \sigma^2 I_{p_d}]
\]

Resampling at rate α \quad Contaminate at rate ξ

$W_0 \rightarrow W_0 \rightarrow W_\xi$
mean Average Precision (mAP)

For a query \(x_i^1 \in \mathbb{R}^{p1} \), we rank view-2 data vectors \(\{ x_j^2 \}_{j=1}^{n2} \subset \mathbb{R}^{p2} \) by considering euclidean distances from the query \(\{ \| (\hat{A}^1)^\top x_i^1 - (\hat{A}^2)^\top x_j^2 \|_2 \}_{j=1}^{n2} \). We define an index set of associated vectors \(S_i := \{ 1 \leq j \leq n2 \mid w_{ij}^{12} = 1 \} \), and we sort the ranking of \(\{ x_j^2 \mid j \in S_i \} \) so as to be \(q_1^{(i)} \leq q_2^{(i)} \leq \cdots \leq q_{|S_i|}^{(i)} \). Then Average Precision (AP) for a query \(x_i^1 \) is defined by

\[
\text{AP}_i := |S_i|^{-1} \sum_{j=1}^{|S_i|} (j / q_j^{(i)})
\]

and a sample mean of AP scores over all queries,

\[
\text{mAP} := \frac{1}{n1} \sum_{i=1}^{n1} \frac{1}{|S_i|} \sum_{j=1}^{|S_i|} \frac{j}{q_j^{(i)}},
\]

\[
= \text{AP}_i
\]

is called mean Average Precision (mAP). Higher mAP indicates better retrieval precision.